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Abstract. In theedge connectivity augmentation problemone wants to find an edge set of minimum total
capacity that increases the edge connectivity of a given undirected graph byτ . It is a known non-trivial
property of the edge connectivity augmentation problem that there is a sequence of edge setsE1, E2, . . . ,
such that

⋃
i≤τ Ei optmially increases the connectivity byτ , for any integerτ . The main result of the paper is

that this sequence of edge sets can be divided intoO(n) groups such that within one group, allEi are basically
the same. Using this result, we improve on the running time of edge connectivity augmentation, as well as we
give the first parallel (RNC) augmentation algorithm. We also present new efficient subroutines for finding
the so-calledextreme setsand thecactus representation of min-cutsrequired in our algorithms. Augmenting
the connectivity ofhypergraphswith ordinary edges is known to be structurally harder than that of ordinary
graphs. In a weaker version when one exceptional hyperedge is allowed in the augmenting edge set, we derive
similar results as for ordinary graphs.

Key words. graph augmentation – edge connectivity – hypergraphs – randomized algorithms – parallel
algorithms – combinatorial optimization

1. Introduction

In the paper we obtain improved algorithms for the undirected edge connectivity aug-
mentation problem by a new insight to the structure of edge sequences giving successive
optima. LetG = (V, E) be an undirected graph with integral edge capacities. Acut is
a partition of the vertex set into two subsets; the value of a cut is the total capacity of
edges between the two sets. Cuts with minimum valuec aremin-cuts; c is the (edge)
connectivityof G. Given aconnectivity incrementτ (or atarget connectivityk = c+ τ),
the edge connectivity augmentation problemis to find an edge set of minimum total
capacity whose addition toG increases its connectivity byτ.

Our most efficient Monte Carlo algorithm has a running time1 of Õ(n2 log(U/c))
wheren is the number of vertices andU is the highest edge capacity in the graph.
In comparison the deterministic algorithm of Gabow [18] runs inÕ(n2m) time while
a very recent algorithm [33] improves this tõO(nm). The best algorithm for graphs
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1 We use theÕ (soft-O) notation for asymptotics up to a polylogarithmic factor.
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with unit edge capacities with runtimẽO(kτm) is due to Gabow [16]. Based on this
work, very recently the Monte Carlo runtime of edge augmentation was improved to
Õ(n2) [6].

Our new results stem from the following observation. On one hand, it is known
that edge connectivity augmentation can be done in strongly polynomial time, inde-
pendently of the edge capacities or the increment value [12]. On the other hand, for
small incrementsτ, algorithms increasing connectivity by one inτ phases turn out to
be more efficient [16]. In particular, these algorithms use min-cut structures that can
take advantage of the improved running times of some new min-cut algorithms [15].
However, these algorithms have their running time, seemingly inherently, dependent
onτ and hence are not polynomial. In the paper, we improve on these algorithms so that
the running time becomes independent of the increment value.

We show that the consecutive augmentation phases can be grouped intoO(n)
segments, such that within a segment, the augmentation steps are basically identi-
cal. This result is of independent theoretical interest, as well as it already yields an
Õ(nmmin{n, τ})-time augmentation algorithm. We show that the situation is some-
what analogous to the Ford–Fulkerson augmenting path-algorithm for maxflows: in the
original algorithm one finds paths that increase the flow value one by one, hence that
algorithm is not polynomial for capacitated graphs. The key to obtain a polynomial
algorithm is to show that there is a polynomial sequence of augmenting paths such that
saturating flow on them is sufficient for computing the maximum flow. Note that the
output of such an algorithm for some flow value contains all other outputs for smaller
flow values. Previous known polynomial time augmentation algorithms, on the other
hand, do not have this property: aτ1-edge connected augmentation produced by the al-
gorithm is not necessarily the subgraph of that for someτ2 > τ1. We give an algorithm
that can produce an element of a fixed sequence of successive optima, in polynomial
time independently of the increment.

By our grouping technique, we can give various very efficient augmentation algo-
rithms. This paper describes the first parallel (RNC) algorithm for this problem. We give
randomized sequential algorithms with running time

Õ(n2 min{n, logτ/c, lognU/c}) ,
wherec is the original connectivity,τ is the connectivity increment, andU is the
maximum edge capacity. The deterministic version runs inÕ(nmmin{n, τ}) time. For
an arbitrary value ofτ, we can also find an element of the increasing sequence of optima
(
⋃

i≤τ Ei ), with running time not depending onτ.
Recently, finding efficient edge connectivity augmentation algorithms became a well-

studied area [38,7,12,32,15,18]. The algorithms use various min-cut structures and are
generally based on maxflow computations. Our algorithms require efficient subrou-
tines for finding two cut data structures: the extreme sets introduced by Watanabe and
Nakamura [38] and the cactus representation of Dinitz et al. [10]. We improve on the
efficiency of finding the extreme system: we present the first RNC algorithm by a new
analysis of Karger’s [24] algorithm, as well as a very efficient sequential algorithm
based on a representation of near-minimum cuts [3]. By recent breakthroughs in the
design of algorithms for finding edge connectivity and min-cuts [23,33,15,26], it turns
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out that several min-cut structures are much easier to build than to find even a single
source-sink min-cut. Our algorithms take advantage of these results and, in particular,
avoid maxflow computations.

The rest of this paper is organized into two independent parts. In the first part,
we discuss the theory of edge connectivity augmentation algorithms. We sketch those
ideas and analyses of earlier algorithms that we build on. Then two new algorithms
are described in Sections 3 and 4. The first algorithm is our strongly polynomial time
successive algorithm; the second one runs in RNC. The correctness of these algorithms
are proved in Section 5. Section 6 deals with the hypergraph connectivity augmentation
problem.

Part II describes sequential, randomized and parallel subroutines required in our
algorithms. Section 9 contains cactus algorithms; Section 8 extreme sets algorithms. The
running times of the best known augmentation algorithms are given in the concluding
section.

1.1. Basic notation

We assume that the input graph haven vertices, andm edges; parallel edges are not
allowed and thusm= O(n2). In the terminology of [22], an algorithm ispolynomial, if
its running time is polynomial in the bit length (the logarithm) of the input numbers and
in n. And an algorithm isstrongly polynomial, if the number of arithmetic operations
and the space usage is polynomial inn. The arithmetic operations are addition, com-
parison, multiplication and division. In the paper, we use the term strongly polynomial
in a stronger sense: we require that the arithmetic operations be performed on numbers
not larger than a polynomial inn plus the maximum of the input numbers.

For X ⊆ V, let X = V− X. A cut with bipartition toC andC is denoted(C|C). The
valuedG(C) of a cut(C|C) is the total weight of the edges connectingC andC. The
connectivitycG of G is the minimum value of any of its cuts. Thek-demandof a setC
is demG(C, k) = max{0, k− d(U)}. We omit subscriptsG if it causes no ambiguity.

A subpartitionP of V is a set of disjoint subsets ofV. Two setsC andD are called
intersectingif neither ofC ∩ D,C ∩ D andC ∩ D is empty andcrossingif in addition
C∩ D 6= ∅. A set system islaminar if it contains no intersecting pair. Sets of a laminar
systemF can be viewed as nodes of a tree whereX andY ∈ F are joined by an edge if
X ⊂ Y but there is noZ ∈ F with X ⊂ Z ⊂ Y.

Part I: Extreme sets based augmentation algorithms

There are two approaches to solving the augmentation problem. One approach is first de-
scribed by Cai and Sun [7]: they add augmenting edges to an extra artificial node and then
use edge splitting [30] to remove that node. Frank [12], based on this approach, presented
the first strongly polynomial time algorithm which solves the (integral) capacitated case
in O(n5) time. Gabow [18] improved Frank’s running time toO(n2m log(n2/m)), which
was very recently further improved toO(nmlogn) by Nagamochi and Ibaraki [33]. In
these algorithms, the computational bottleneck is edge splitting from the extra node. So
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far, all known edge splitting algorithms are either based on flow computations [12,18],
or their running time depends on the total capacity of the augmenting edges [3].

Our new algorithms are based on a historically earlier approach, when the con-
nectivity is repeatedly increased by one unit until the target is reached. The first edge
connectivity augmentation algorithm by Watanabe and Nakamura [38] has this ap-
proach. A more efficient version with running timeO(τ2nm) was given by Naor et
al. [32]; Gabow [16] improved this time tõO(kτm). All these running times are valid
for graphs with unit edge capacities only.

Algorithms of this latter approach [38,32,16] have an additional property that they
can find asuccessive, increasing sequence of intermediate optima, for increasing values
of target connectivityk. We will pay special attention to algorithms with this successive
property. For example Naor et al. [32] notice that such an algorithm can always be used
to solve the modified “no target” problem where instead of specifying a connectivity
target, the total capacity of edges to be added is bounded and the connectivity should
be increased by as much as possible. Unfortunately an algorithm that increases the
connectivity one by one is inherently not polynomial. We give an alternate definition of
a successive algorithm that is sufficient for example to solve the no target problem but
allows polynomial time algorithms:

Definition 1 (Successive augmentation).An edge augmentation algorithm issucces-
sive if its output for targetk is the subgraph of its output for targetk′ > k.

We remark that Cheng and Jordán [8] proved that successive algorithms exists
for a general class of augmentation problems. The polynomiality of such successive
algorithms is not addressed in their paper.

Augmenting by one: the cactus-increase

A main subroutine of our algorithms is the algorithm of Naor et al. [32] to increase edge
connectivity by one, for connected graphs. It finds a minimum cardinality edge setE′
covering all min-cuts by the cactus representation of all min-cuts [10]. For the purposes
of the paper, we call this algorithm thecactus-increasesubroutine.

A cactusis a graph which contains no cut edges and no two cycles with a common
edge. In other words, a cactus is built up from a single vertex by recursively joining
cycles (of length possibly two!) to existing vertices. Thecactus representation(Fig. 1)
of an (ordinary) connected graphG is a cactusK such that a partition ofV corresponds
to the vertex set of the cactus, with an exceptional case that some cactus-vertices may
contain the empty vertex set (as in Fig. 1). The min-cuts of the cactus are precisely those
which arise by erasing two edges of a cycle. Then the min-cuts ofG are precisely the
edge sets ofG connecting two components of a min-cut of the cactus.

Given the cactus representation, the connectivity of a graph can be increased op-
timally by one as follows [32]. Each cactus graph has an Eulerian cycle; we fix such
a cycleC. In C, the degree two vertices of the cactus are ordered cyclically. By the
definition of the representation, each min-cut ofG dividesC into two consecutive parts.
Hence if we connect all pairs ofoppositedegree two vertices by edges, we add one edge
to each min-cut ofG.
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Fig. 1. A graph with connectivity 6 and the cactus representation of its min-cuts. Dashed edges form an
optimum augmentation to connectivity 7 ofcactus-increase

We sketch why the cactus-increase step uses minimal number of edges. It is easy
to prove that setsScontained by degree two vertices of the cactus haved(S) = c. One
edge has to be added to each such setS; and one edge can cover at most two of them. Let
there bè such vertices; then at leastd`/2e edges are required to increase connectivity.
This is equal to the actual number of edges used, proving optimality. It is important to
remember that if̀ is odd, we have to addtwo edges to one of the setsS.

2. A generic augmentation algorithm

Our augmentation algorithms build on the common structure of those of [38,32,16].
These algorithms on one hand use some information about min-cuts to increase connec-
tivity, as it is done in the cactus-increase subroutine; on the other hand, global optimality
is reached by using the structure of the so-calledextreme sets, a higher-value generaliza-
tion of minimal min-cuts. Next we describe the general structure of these extreme-sets
based algorithms.

Extreme-sets based algorithms (see Algorithm 1) increase connectivity inphases,
until the connectivity is increased byτ. In phaset, an intermediate augmented graph
Gt−1 is further augmented by an edge setEt ; Gt = Gt−1+ Et . We use subscriptst to
refer to properties ofGt : we letdt(C) be a shorthand fordGt (C), and letct denote the
connectivity ofGt . Unlike all previous algorithms, our algorithms will not necessarily
havect+1 = ct + 1.

In each phase, the edge setEt is found intwo steps. In theconnectivity-increasestep,
an edge setE′t is found that increases connectivity toct . The second step is alookahead
step. In the first step, we may as well contract all subsets ofGt−1 not separated by cuts of
value at mostct ; the end-vertices of the augmenting edges can be placed anywhere within
a contracted subset. It is known [32] that an arbitrary placement ofE′t may cause that
the next augmentation step cannot yield an optimum augmentation, if compared toGt−1
and not just toGt . In the lookahead step, the end-vertices of augmenting edges are kept
within the same contracted subset, but replaced so as to preserve optimality for further
augmenting steps. We start by an example to show that in an optimal augmentation
phase, one requires a lookahead step.

Example 1.Let a graphG have six highly connected componentsA1, . . . , A6. Let the
first and last threeAi be connected by edges of two triangles; let there be a further edge
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betweenA1 andA6. G has a single min-cut of value 1 separating the two triangles. To
augment connectivity by one, an arbitrary edge may be added connecting the first three
and last threeAi . Assume one adds another edge betweenA1 andA6. Then the resulting
graph has connectivity 2, with four minimal min-cutsA2, A3, A4 andA5. Hence another
two edges connecting these four sets are necessary to augment the connectivity ofG to
three. On the other hand, if we augment by one by an edge betweenA3 and A4, say,
then another edge betweenA2 andA5 suffice for the augmentation.

ut
In the above example, we considered (inclusion-wise) minimal sets with respect to

a given demand (indeed,A1 ∪ A2 ∪ A3, A4 ∪ A5 ∪ A6, and A2, . . . , A5 are all such
sets). We define such sets as extreme:

Definition 2 (Extreme sets).A subsetU ⊂ V is d-extreme(as in [38]) if d(U) = d
andd(U ′) > d for all U ′ ⊂ U. The collection of all extreme sets for all values ofd is
theextreme system.

Extreme sets satisfy the following properties. Their collection forms a laminar sys-
tem. The collection ofd-extreme sets for a fixedd forms a subpartition. The subpartition
of d-extreme sets, for all possible values ofd, definelevelsof the extreme system. For
c = cG, the edge connectivity value ofG, it is equivalent that a setS is c-extreme, or
thatSis minimal such that(S|S) is a min-cut, or thatSis contained by a degree two node
of the cactus representation. Among extreme sets,cG-extreme sets are inclusion-wise
maximal (but other extreme sets can be maximal as well).

Algorithm 1: extreme-sets based algorithms

input : a graphG; the connectivity targetk.

t ← 0; G0← G; c0← cG
Phase: until ct = k do
Ft ← the extreme sets ofGt
t ← t + 1
E′t ← connectivity-increase( Gt−1)
Et ← lookahead( Ft−1, E′t , k)
Gt ← Gt−1+ Et

end do
output Gt

In order to prove the optimality of an extreme-sets based augmentation algorithm, we
introduce a potential function based on the system of extreme sets. First we generalize
the notion of the demand to laminar systems – the potential will then be the demand
of the extreme systemF0 of the input graph. Let thek-demand of a subpartition
P = {V1, . . . ,Vm}, demG(P, k), be the sum of the demands of individual sets; let the
demanddemG(F, k) of a laminar familyF be the maximumk-demand of a subpartition
consisting of elements ofF . (Note that this subpartition, as well as the value of the
demand, can be found by recursion on the tree corresponding to the laminar system.)
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The potential demG(F0, k) is proved to give a tight bound for the augmentation cost
(for ordinary graphs) by Watanabe and Nakamura [38]. Let thecost of an edgebe its
capacity times its size (two for ordinary edges). Notice that for ordinary graphs, this
is twice the natural cost measure. The goal of the rest of this section is on one hand
to prove the theorem of Watanabe and Nakamura below; on the other hand, to give an
optimality criterion for our further algorithms using the general-lookahead step.

Theorem 1 ([38]).The minimum number of (ordinary) edges needed to augment con-
nectivity to target valuek ≥ 2 is

d1
2 max{dem(P, k) : P is a sub-partition}e .

Theorem 2. For all t, in phaset of an extreme-sets based augmentation algorithm, let
Et be the augmenting edge set added toGt−1 to obtain the next intermediate graphGt .
LetFt be the system of extreme sets ofGt . Assume that for allt,

(2.A) demGt−1(Ft−1, k) − demGt (Ft−1, k) is (at least) the cost ofE′t (Ft−1 is fixed as
reference!);

(2.B) each extreme set ofGt is extreme inGt−1 as well (note that the requirement is
sufficient to hold for the positive demand extreme sets only); and finally that

(2.C) the output graph of the final phase has connectivityk.

Then the output of the augmentation algorithm has optimum costdemG(F, k). And
if (2.A) holds in all phases except for the last one, and in the last phaseτ, the cost
of the augmenting edgesEτ is at most2d1

2demGt−1(Ft−1, k)e, then the output of the
augmentation algorithm has optimum cost as in Theorem 1.

Proof. We consider the case when (2.A) holds in the last phaseτ as well. The other
case can be proved in exactly the same way, by taking care of the fractional values in
the last augmentation phase. Clearly, demG(F0, k) is a lower bound on the cost of any
augmenting edge set, and in particular on

⋃
t≤τ Et . An upper bound on the cost of this

edge set, by (2.A), is∑
t≤τ

demGt−1(Ft−1, k)− demGt (Ft−1, k) .

By (2.B),Ft−1 ⊇ Ft ; thus demGt (Ft−1, k) ≥ demGt (Ft, k). By rewriting the above
sum,

demG0(F0, k)− demGτ (Fτ−1, k)+
∑
τ>t>0

demGt (Ft, k)− demGt (Ft−1, k) ≤

demG(F0, k)− demGτ (Fτ−1, k) .

Since thek-demand of the final graph equals 0 by (2.C), the claim is proved.
ut

We prove Theorem 1 in the next subsection. We describe a lookahead step and
prove that an extreme sets based algorithm with cactus-increase and this lookahead step
achieves optimality. The proof is based on the theorem of Naor et al. [32] that (2.B)
holds for the edge set given by the cactus-increase step. For completeness, we prove
this fact in Section 5.
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2.1. The general-lookahead step

Next we describe ourgeneral-lookaheadstep (see Algorithm 2), a generalized form of
the lookahead step of Naor et al. [32] (the original form is also given in Section 2.2). As
Example 1 indicates, the lookahead step is necessary to ensure optimality. In phaset, the
connectivity-increase step adds an edge setE′t . The lookahead step takes each end-vertex
v′ in E′t and replaces it by anotherv to obtain an edge setEt (in particular,|Et | = |E′t |).

In Algorithm 2 we process edge-endverticesvi of E′t as follows. LetWi ∈ F̃
be the inclusion-wise minimal set containingvi with ˜dem(W) maximum. ThenWi is
recursively replaced by one of its inclusion-wise maximal extreme subsets, until the
final Wi has either demand 0 or consists of a single vertexwi . In E′t , vi is then replaced
by wi . We also update the values of̃dem(W) by subtracting one for each immediate
extreme setWi visited.

Algorithm 2: general-lookahead

input : an edge setE′t ;
a laminar familyF̃ with demands ˜dem(W) for W ∈ F̃ ;
(the target valuek is contained implicitly in ˜dem;
F̃ contains all extreme sets ofGt−1.)

for all edge-endverticesvi in E′t do

Wi ← the maximal element of̃F containingvi
repeat until Wi is a single vertexwi or ˜dem(Wi ) = 0

select a maximal extreme subsetW ⊂ Wi with ˜dem(W) > 0
˜dem(Wi )← ˜dem(Wi )− 1

Wi ← W
end repeat
replace vi bywi in E′t

end do
output E′t and all ˜dem(W)

Theorem 3. Assume thatEt is obtained fromE′t by the general-lookahead algorithm
whereF̃ is a laminar family containing all extreme sets ofGt−1 and the input ˜dem(W)
is equal todemGt−1(U, k) for all W ∈ F̃ . Assume that (i) no edge ofE′t has two
endvertices in the same set ofF̃ ; furthermore that (ii) no maximal extreme setU has
dE′t (U) >

˜dem(U). Then (2.A) of Theorem 2 is satisfied; furthermore the output˜dem(W)

is equal todemGt−1+Et (U.k) for all W ∈ F̃ .

In the proof of this theorem, we use the notion of the recursive demand of a set in
a laminar family. Notice that the maximum demand subpartition of extreme sets can be
found by starting with minimal extreme sets, and replacing them by their parents in the
laminar family if this increases the total demand. Formally, in a laminar familyF , let
therecursive demandrdem(U|F, k) be identical to dem(U, k) for all minimalU ∈ F .
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And given rdem(Ui |F, k) for all maximal subsetsUi of U ∈ F , let

rdem(U|F, k) = max{dem(U, k),
∑

i

rdem(Ui |F, k)} .

Clearly, the demand of a laminar familyF as we defined before is the sum of the
recursive demands of its maximal elements.

Proof. Let an input vertexvi be replaced by a vertexwi in the output; letWi ∈ F
be maximal withvi ∈ Wi . Then ˜dem(U) decreases by one for all extreme setsU
wi ∈ U ⊂ Wi with positive initial value of dem(U, k) = ˜dem(U). For all U ∈ F̃
the value of ˜dem(U) remains non-negative throughout the procedure by (ii); by (i) its
decrease is equal to the number of edges added toU. Thus the output ˜dem(U) becomes
the new demand value as required.

Finally (2.A) follows if we show that rdem(Wi |F̃, k) decreases bydEt (Wi ) for all
maximal extremeWi . Let us define ˜rdem(U) in the same way as rdem(U|F̃, k) by
using the values of ˜dem(U) instead of dem(U, k). By the previous argument both the
initial and the final values of ˜dem(U) and rdem(U|F̃, k) agree. Hence we prove for
˜rdem(U); we show that its value decreases by one whenever a vertexwi is processed.

Let us consider all intermediateU ∈ F̃ , wi ∈ U ⊆ Wi in the inclusion-wise increasing
order. The last suchU ∈ F̃ with ˜dem(U) > 0 has ˜dem(U ′) = 0 for all U ′ ⊂ U; hence
˜rdem(U) = ˜dem(U) and this value decreases by one whenwi is added. For all remaining

U both ˜dem(U) as well as (by induction) ˜rdem(U ′) decreases by one; thus we get that
˜rdem(U) decreases by one as needed.

ut
Finally we prove the main Theorem 1. We require the following property of extreme

sets:

Lemma 1. Any vertex setU contains an extreme setW ⊆ U with d(W) ≤ d(U). In
particular a graph with connectivityk must havek-extreme sets.

Proof. Let W be an inclusion-wise minimal subset ofU with d(W) ≤ d(U). ThenW is
extreme.

ut
Proof. We prove that an extreme-sets based algorithm with cactus-increase and general-
lookahead steps satisfies (2.A–C) of Theorem 2. Since by Lemma 1 a graph has con-
nectivity k if all of its extreme setsU haved(U) ≥ k, (2.C) holds by the definition of
Algorithm 1. (2.A) holds in all except the last phase by Theorem 3. It is proved in [32]
that an arbitrary edge set found by cactus-increase satisfies (2.B); we give a proof of
this fact for completeness in Section 5.

The only remaining case is the last phase when Theorem 3 cannot be applied: it is
possible that the increment is one and there are an odd number of maximum-demand
extreme sets. Then two edges are added to some extreme set; however, its demand is
only one, violating (ii) of Theorem 3. In this scenario, the exceptional case of Theorem 2
still applies.

ut
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2.2. Obtaining a successive sequence of optima: balanced-lookahead

An algorithm using the general-lookahead step is not a successive algorithm in our
definition. Although it obtains an optimum solution for the given targetk, the two
output graphs for targetsk1 < k2 are not necessarily subgraphs of one another. In
contrast, the algorithm of Naor et al. [32] is a successive algorithm using the cactus-
increase step together with a more specific lookahead routine. Here we describe this
balanced-lookaheadroutine that we also use in our successive algorithm. It is noticed
in [32] that a successive algorithm can solve the so-called No Target Problem when the
number of edges we may add to the input graph is bounded, and we want to increase
the connectivity by as much as possible.

By using the cactus-increase step, we may obtain a successive algorithm by requiring
for all target values the lookahead step proceed in the same way. In the general-lookahead
step, the choice of the augmenting edges depend on demand values and hence on the
choice of the target. The balanced-lookahead step fixes this “flaw”.

The balanced-lookaheadstep is a specific implementation of general-lookahead.
When an extreme setWi has to be replaced by anotherW, we choose some of its
extreme subsetsW with d(W)minimum. Then the value ofd(W) is increased by one and
the procedure is repeated as in general-lookahead. Note that this is an implementation of
the general-lookahead subroutine. This algorithm continues selecting extreme subsets
of possibly already zero-demand sets, however in that case, the choice is arbitrary in
general-lookahead.

3. An efficient successive algorithm

In this section we present our strongly polynomial time successive augmentation algo-
rithm. Recall that we call an algorithm successive if its output for targetk is the subgraph
of its output for targetk′ > k. We aim to use the general framework of extreme-sets
based algorithms that increase connectivity in phases. Our idea is that we compute
the augmenting edges of several phases (“groups”) together, without recomputing any
information about the intermediate augmented graphs. By this idea, the running time of
our algorithm becomes independent of the connectivity increment.

We get to our successive polynomial-time algorithm in two steps: in this section,
we describe a simple connectivity-increase step that increases connectivity bytwo by
requiring the knowledge of the extreme sets only; then in the next subsection, we show
that the phases of this new algorithm can be divided intoO(n) groups such that within
one group, the same edges can be added by the connectivity-increase step of each phase.
This “grouping” is possible since the extreme system is robust to the addition of the
augmenting edges, as it is also indicated by property (2.B) of Theorem 2. The final
implementation details of how to find the groups and how to perform lookahead is in
the last subsection.

The main idea of our connectivity-increase step is that an arbitrarycycle of weight
1/2 connecting allc-extreme sets increases connectivity by one. This step is thus
dependent only on the maximal extreme sets of the intermediate graph. In comparison,
the cactus-increase step requires the knowledge (the representation) of all min-cuts of
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the intermediate augmented graphs at each call. However, we do not want to allow
fractional weights in the augmenting edge set. In case there are no(c+ 1)-extreme sets
(or all (c+ 1)-extreme sets are subsets ofc-extreme ones and at least one new edge
is added to each of them), we may add the same cycle with weightone, to increase
connectivity bytwo. However, in the following example, this step cannot be applied in
an arbitrarily long sequence of augmentation phases:

Example 2.In a starting phaset, let there be an odd number ofct−1-extreme sets
U1, . . . ,U2`−1, and a single maximal extreme setU0 with d(U0) = ct−1+1. We cannot
add a cycle connecting allct−1-extreme sets, since that does not decrease the demand
of U0. Thus we have to increase connectivity by one by, say, cactus-increase. LetE′′t be
an edge set increasing connectivity by one; then wlogdE′′t (U1) = 2, whiledE′′t (Ui ) = 1
for i ≥ 2. Hence in the next phase, thect-extreme sets areU0,U2,U3, . . . ,U2`−1, while
U1 is (ct +1)-extreme. In subsequent phases,U0 andU1 keep exchanging roles, and we
may never add cycles connecting maximum-demand extreme sets.

ut
Now we give the formal description of the cycle-increase step. The solution to

handle the situation as in the example is to add a cycle connecting all theUi , including
the (c+ 1)-extreme one – whenever possible. For the sake of simplicity, we will be
slightly more restrictive in specifying the cases when cycle-increase does not apply than
we need to. Also notice that the augmenting edge setE′ has to include an edge setE′′
increasing connectivity optimally by one, in order to obtain a successive algorithm.

Definition 3 (cycle-increase).Let G be the input to the connectivity-increase step, let
the connectivity ofG bec. Cycle-increase cannot be applied in the following cases (and
the augmenting edge set is given by cactus-increase, say): ifG has

– a maximal extreme setU with d(U) = c+ 2;
– more than one maximal extreme setsU with d(U) = c+ 1;
– a maximal extreme setU with d(U) = c+ 1, when there are an even number of

c-extreme sets;
– a maximal extreme setU with d(U) = c or c+1, with more than one extreme subsets

U ′ that haved(U ′) = d(U)+ 1.

Assume that we are not in any of the above cases. LetE′′ be a minimum cardinality
edge set that increasesG’s connectivity by one (E′′ may, for example, be the output
of cactus-increase). Then the output edge setE′ of cycle-increase is a cycleE′ with
E′′ ⊂ E′ that connects all maximal extreme setsU with d(U) = c or c+1. Furthermore,
if such an extreme setU has an extreme subsetU ′ with d(U ′) = d(U)+ 1, then at least
one endvertex ofE′ has to be placed toU ′. (This latter condition is satisfied by using
the balanced-lookahead step.)

ut
Theorem 4. An extreme-sets based augmentation algorithm with cycle-increase and
balanced-lookahead steps finds an optimum cost augmentation of the input graph to
connectivityk, belonging to an increasing sequence of graphs for different values ofk
(successive algorithm).
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Proof. By the definition of cycle-increase and balanced-lookahead, the algorithm is
successive. To prove optimality, we show that the conditions of Theorem 2 hold: (2.A)
follows by Theorem 3, (2.C) is trivial. We prove (2.B) separately in Section 5.

ut

3.1. Groups of phases: definition and bound

We continue the analysis of our successive algorithm using the cycle-increase and
balanced-lookahead steps. Our next goal is to show that the augmentation phases can
be divided intoO(n) consecutivegroups, such that within a group, the cycle-increase
step may add the same augmenting edge set to the input graph. We define groups by
also ensuring that the balanced-lookahead step behaves in a similar way within a group
of phases. However, it cannot be required that the augmenting edge sets within a group
remain the same after processed by balanced-lookahead – all we achieve is that an
efficientO(n2) time algorithm can compute the entire augmenting edge set of the group
as it were given by the balanced-lookahead step. The details of this algorithm are in the
next subsection.

By definition, we know that the cycle-increase step depends on the system of max-
imum, maximum-1 and maximum-2 demand extreme sets. The next example describes
how balanced-lookahead depends on the demand differences of the extreme system.

Example 3.Let us consider those phases of the algorithm where balanced-lookahead
processes a fixed extreme setW. Let U1, . . . ,U` be the extreme subsets ofW with
dt(Ui ) = d minimum. Then iǹ subsequent such phases,W is replaced first byU1 and
this increasesd(U1) to d + 1, then the same thing happens withU2, etc. Finally, all
dt+`(Ui ) = d+ 1, which will be the new minimum value. The algorithm is unchanged
as long as there are no otherd and(d+ 1)-extreme sets than theUi .

ut
In summary, the steps of our algorithm depend on the properties of extreme sets

described by the following functions (see Fig. 2). IfU ∈ Ft , i.e. U is extreme inGt ,
then let

– childrent(U) denote the (inclusion-wise) maximal extreme subsets ofU;
– maxchildrent(U) denote the maximum demand extreme subsets ofU;
– max–1childrent(U) (max–2childrent(U)) denote the collection of extreme subsets

with demand maximum or maximum–1 (or maximum–2);

We use these functions with argument(V) to denote extreme subsets of the entire graph.
By Example 3, we extract the following definition. We say that the two intermediate

augmented graphsGt andGt+1 of two consecutive phases arestructurally equivalentif

(i) Ft = Ft+1;
(ii) max–2childrent(V) = max–2childrent+1(V); and
(iii) for all U ∈ Ft , max–1childrent(U) = max–1childrent+1(U).

If (i–iii) holds, both cycle-increase and balanced-lookahead behaves in the same way in
phasest andt+1. We define agroup of phasesas the longest sequence of phases where
all consecutive intermediate graphs are structurally equivalent.
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maxchildren(V) max-1children(V)
max-2children(V)

demand
children(V)

U
children(U)

maxchildren(U) max-1children(U)

cut value (d)

Fig. 2.The laminar system of extreme sets. Thick lines denote vertex sets, dots denote single vertices. Dashed
lines illustrate pointers of the extreme system. The two vertical arrows point in the direction of increasing
values (of demand and degree)

Lemma 2. All augmentation phases can be divided into at mostO(n) groups.

Proof. We bound the number of phases when (i), (ii) or (iii) is violated separately.
By (2.B) of Theorem 2 (which we prove in Section 5), (i) is violated only if there
is a U ∈ Ft − Ft+1. This may only happen once for each initial extreme set,O(n)
times altogether. The number of phases (ii) is violated can be bounded similarly. By the
choice of the cycle-increase step,U ∈ max–2childrent(V)−max–2childrent+1(V) only
if U ∈ Ft−Ft+1. The same holds for the cactus-increase step; notice even though there
may be an exceptional setU ∈ maxchildrent(V) whose demand is decreased by two,
such a set remains in max–1childrent(V). Hence (ii) may be violated at most twice for
each initial extreme set: once when it first becomes the member of max–2childrent, and
once when it becomes non-extreme.

It is less straightforward to give a tight analysis for (iii). As before,U ′ ∈ max–
1childrent(U) −max–1childrent+1(U) only if U ′ becomes non-extreme. However,U ′
may get added to max–1childrent(U) for eachU ⊃ U ′. By this analysis, we only get an
O(n2) bound.

We bound the number of phases where (iii) is violated by a potential function
argument. For an extreme setU, let q(U) be the number of distinct valuesd(Uj ) take
for Uj ∈ children(U)−max–1children(U). Let p(U) = 1 for all minimal extreme sets.
For a general extremeU, let

p(U) = 1+ q(U)+
∑

Ui∈children(U)
p(Ui ) .

Finally, let p be the sum ofp(U), for all maximal extremeU.
Obviously, p remains the same if (i) and (iii) holds. Whenever (i) is violated, an

extreme setU becomes non-extreme;p decreases then since each extremeU has its own
contribution of at least one top. Initially, p= O(n). We show thatp decreases if (iii) is
violated. By the definition of balanced-lookaheadmax–1children(U)may only increase;
this happens if the minimum degree of an extreme subset ofU increases and reaches
within distance one from the extreme setsUj ∈ children(U)−max–1children(U)with
d(Uj ) minimum (allUj ) are added to max–1children(U) then). But in this caseq(U)
decreases by one. The proof is complete.

ut
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We complete the description of groups by proving that we have to call cactus-
increase (or some other routine increasing connectivity by one) only a constant times
in a phase. By definition, the outputE′t of cycle-increase should contain an edge setE′′t
increasing connectivity optimally by one.E′′t might have to be computed individually
for each phase, hence we cannot take advantage of the simple structure of the groups.
By the next lemma, it turns out thatE′′t may be the same for all phases within a group.
We also show below that each group may have no more than two initial phases when
cycle-increase does not apply. This completes the description of a group.

Lemma 3. Within a group of phases, cycle-increase applies for all phases except pos-
sibly the first two phases. Let phasest, t + 1, . . . , t + τ0 belong to the group and let
cycle-increase apply for them. LetE′′t ⊂ E′t be the output of cactus-increase onGt−1.
ThenE′′t increases the connectivity ofGt+k = Gt−1+ kE′t by one, for allk ≤ τ0.

Proof. To prove the first claim, notice that after two phases in which the connectivity of
the initial graphGt−1 increased by one, all maximal extreme setsW with dt(W) ≤ ct+2
havedt+2(W) = ct+2 = ct + 2, with at most one exceptionaldt+2(W0) = ct+2 + 1.
Hence if the next phase is in the same group (i.e. there are no new sets in max–2child(V)),
then cycle-increase applies.

To prove the second claim, notice that by assumption onτ0, all min-cuts ofGt−1+kE′t
separate maximum or maximum+1 demand extreme sets. However,kE′t adds 2k edges
to each cut with this property. Hence the min-cuts ofGt−1 + kE′t are all min-cuts of
Gt−1, proving the claim.

ut

3.2. Processing phases within a group

In this section, we complete the description of our successive algorithm by showing
that the augmenting edge set of an entire group of phases can be computed inO(n2)

time. Within the same time, we also show how to compute the maximum number of
phases that remain within the same group. Together with Lemma 2 and the fact that the
intermediate extreme system does not have to be recomputed ((2.B) of Theorem 2), this
shows:

Theorem 5. The augmentation algorithm with cycle-increase and balanced-lookahead
requires the computation of the initial extreme system, cactus representations forO(n)
intermediate graphs. All remaining steps of the algorithm require an additionalO(n3)

time.
ut

Before giving our algorithm to process a group of phases, we give some insight
into the structure of successive optima. We fix a group and assume that all intermediate
graphs are structurally equivalent. A statement one would obviously like to have is that
the augmenting edges are the same or have low length periods. For example, if the same
cycles could be added, that corresponds to a period of length two. Surprisingly, this
statement fails because of the effect of balanced-lookahead. Our next example shows
that even without a structural change in the extreme system, the sequence of the final
vertices selected by balanced-lookahead can haveexponentially longperiods!
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Example 4.Let the vertex set ofG be partitioned intò maximum demand extreme sets
U1, . . . ,U`. Let p1, . . . , p` be the first̀ prime numbers; letUi consist ofpi vertices,
each with the same small demand. Then the augmenting edges connectingUi to Uj will
change with a period of lengthpi pj . The shortest period length of the entire augmenting
edge set is thus

∏
pi , which is exponentially large inn.

Within a group ofτ phases, our algorithm will compute the multiplicities of each
possiblem = O(n2) edges in the augmenting edge set. Because of the exponentially
large period lengths, we have to be careful with the arithmetic model we use. Strongly
polynomiality, in general (as in [22]), allows arithmetic operations with, say, numbers
of n times larger size than any number in the input. We shall be more restrictive and
require all arithmetic operations be performed on numbers not exceeding the maximum
of the connectivity target valuek (which is part of the input) andn2.

3.2.1. Task 1.First we show how to find the largest valueτ0 such that phaset+ τ0 is in
the same group as phaset. We findτ0 by an upward recursion over the extreme system:
we defineτ(U) as the maximum number of edges that balanced-lookahead can add to
a fixed extreme setU by keepingU and its descendants structurally equivalent. In the
discussion below,U will always denote the current extreme set;U1, . . . ,U`′ its extreme
subsets with maximum demand; andU`′+1, . . . ,U` the maximal ones with demand less
by one. The balanced rule selectsUi in the increasing order ofi .

The value ofτ(U) can be initialized to be infinite for minimal extreme sets (i.e.
single vertices). Givenτ(Ui ) for i ≤ ` as above,τ(U) is the minimum of the following
three upper bounds:

– no more thanτ(Ui ) edges can be added to anyUi : let m= min{τ(Ui ) : i ≤ `}, then
τ(U) < m`+min{i : τ(Ui ) = m};

– d(U) < d(Ui ) must remain valid as long asU is extreme:dGt (U) + τ(U) <
dGt (U1)+ dτ(U)/`e; and finally

– for all maximal extreme subsetsU ′ of U distinct from theUi , d(U ′) > d(U`′+1)

must hold:

dGt (U
′) > dGt + d

τ(U)− `′
`

e .
Providedτ(Ui ) as above is known fori ≤ `, τ(U) can be computed inO(n) time.

Hence allτ-values can be found inO(n2) time. The value of the maximum increment
with structurally equivalent intermediate graphs,τ0, is the minimum ofτ(U) for the
maximum and maximum-1 demand extreme sets, and the number of phases before a new
maximal extremeU ′ attainsd(U ′) = ct + 2. This number is min{dGt (U

′)− ct − 1 : U ′
is maximal extreme withdGt (U

′) > ct + 2}.

3.2.2. Task 2.Next we turn to our second task: we compute the set of augmenting
edges added in a group of phases. We proceed by downward recursion. For each pair
of extreme setsU and W, let times(U,W) be the total number of augmenting edges
betweenU and W. Our goal is to compute times(wi , w j ), where thewi andw j are
single vertices. We initialize times(U,W) = 0 or times(U,W) = τ0/2 for pairs of
maximal extreme sets, according to the cycle-increase step.
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Let us consider the recursive evaluation step now. For a pairU, W, let balanced-
lookahead select, in order, the extreme subsetsU1, . . . ,U`1 and W1, . . . , W`2, re-
spectively. Now times(Ui ,Wj ) is determined as follows. Leth be the least common
multiple of`1 and`2; h divides`1`2. Then we determine the sequence(Ui1,Wj1), . . . ,
(Uih ,Wjh), in which the edges are selected. Finally,

times(Uit ,Wjt ) = b(times(U,W)− t + 1)/hc .

The augmenting edge set is the collection(wi , w j ) with weight times(wi , w j ), where
thewi are extreme sets with single vertices (i.e. minimal ones).

Finally we analyze the running time of the procedure. Since times(U) decreases
as the size ofU decreases, we never use arithmetic operations on values exceeding
max{n2, τ0}. And for each pair of extreme setsU,W, we perform a constant number of
arithmetic operations to determine times(U,W). Thus the running time isO(n2).

4. A more efficient non-successive algorithm

In this section, we drop the successivity requirement to obtain an improved sequential
algorithm. We also describe the first known parallel augmentation algorithm. The algo-
rithm will require the cactus-increase step at most once, in the last augmentation phase;
in other words the “parity-like” problems in the previous algorithm are all postponed to
the end. Based on this algorithm, in Section 6 we also obtain a hypergraph-augmentation
algorithm using ordinary (two-vertex) augmenting edges, with at most one exceptional
hyperedge in the last phase.

The basic goal of our next algorithm is to avoid cactus computations that require the
construction of current intermediate graphs which are then sequentially dependent on
previous cactus computations. Our new ideas will ensure all phases be dependent only
on the system of extreme sets. While we are no longer restricted to successivity, notice
that in an algorithm using cycle-increase, we still need cactus computations at the end
of each group if its total connectivity increment isodd.

We give separate ideas to handle the last phases of a group, for the different possi-
bilities why a group may end. There are two (main) reasons why a new group has to
be started: either a maximal extreme set becomes of maximum demand, or a maximum
demand extreme set has more than two maximum-1 demand extreme subsets.

Our first idea is that we connectall maximal extreme sets with demand at least
two by a cycle – not only the maximum demand ones. It is possible to prove that this
idea gives a correct connectivity-increase step (by modifying the proof in Section 5
for cycle-increase). However, even then there can be�(n) groups, each of which may
possibly have an odd connectivity increment.

Our next aim is to add two edges to a maximal extreme setU even if it has more
than two extreme subsetsU1, . . . ,U` with dt(Ui ) = dt(U)+ 1, in a phaset. We know
that if U has maximum demand in phaset, then we havect+1 ≤ ct + 1. We relax the
goal to increase the connectivity by two; instead, we only require (2.B) of Theorem 2 –
this still implies optimality. In the next example, however, (2.B) always fails:
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Example 5.Let there be a single maximal extreme setU with extreme subsets
U1, . . . ,U`, ` = 3 as above. Letdt(U) = ct . Then all extreme setsW ∈ Ft not
contained byU havedt+1(W) ≥ ct + 2; dt+1(U) = ct + 2; finally wlog dt+1(U1) =
dt+1(U2) = ct + 2. HenceU3 is the only element ofFt with dt+1(U3) = ct + 1. By
Lemma 1, the complement ofU3 must contain a(ct + 1)-extreme set; this set is in
Ft+1− Ft .

ut
The above example motivates our second idea. We want to make sure that there are

(ct + 1)-extreme sets in phaset + 1 that are extreme in phaset as well. Let us consider
a cycle connecting all maximal extreme sets. Let us select two maximum demand ones
and remove the edge connecting them; these sets will be(ct+1)-extreme in phaset+1.
We obtain our connectivity-increase step by connecting maximal extreme sets in this
path in a particular order, as described next:

Definition 4. Thepath-increasestep is as follows. LetU1, . . . ,U` be the (inclusion-
wise) maximal extreme sets ofGt−1 (see Fig. 2) withk-demand at least two, such
that

d(U`) = d(U1) ≤ d(U2) ≤ . . . ≤ d(U`−1) .

Then letE′t be a collection of edgesei for i = 1, . . . , `−1, whereei connectsUi toUi+1.
Path-increase applies unless the connectivity increment isone, when cactus-increase
has to be used.

ut
Theorem 6. An extreme-sets based augmentation algorithm with path-increase and
general-lookahead steps finds an optimum cost augmentation of the input graph.

Proof. We show that the conditions of Theorem 2 hold: (2.A) follows by Theorem 3,
(2.C) is trivial (we terminate the algorithm when the intermediate graph has connectiv-
ity k). We prove (2.B) separately in Section 5.

ut
We complete this subsection by showing that if a maximal extreme set is ever selected

to receive a single edge by path-increase (U1 or U` in Definition 4), then we may keep
that set as long as it remains extreme. Notice that this fact is crucial in handling groups
of phases. We prove a slightly stronger lemma:

Lemma 4. Let E′t and E′t ′ be the edge sets selected by path-increase in phasest and
t′ > t. LetU1 andU` be the maximal extreme withdE′t (U1) = dE′t (U`) = 1. LetU ′1 and
U ′
`′ be these sets in phaset′. Then by appropriately breaking ties in path-increase, we

may assumeU ′1 ⊆ U1 andU ′
`′ ⊆ U`. Furthermore, ift andt′ are in the same group, we

have equality.

Proof. It suffices to show the claim fort′ = t + 1. By definition, no extreme set has
demand more thanU1 andU` in Gt−1; furthermore all non-maximal extreme sets have
strictly greater demand. Hence inGt , U1 andU` have maximum demand. We are done
if U1 andU` are still extreme; otherwise, they contain another extremeU ′1 andU ′

`′ with
the same (maximum) demand.

ut
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4.1. Groups of path-increase and lex-lookahead

In the previous section, we described path-increase as a connectivity-increase step that
enables us to increase connectivity by the knowledge of the extreme system only. Now
we describe a simple implementation of the general-lookahead step that makes the
grouping technique (Section 3.1) particularly simple. In the discussion, we also fix the
target valuek and always talk aboutk-demands.

The lex-lookaheadstep is the following implementation of general-lookahead.
Whenever an extreme setW is replaced by its extreme subset, we choose thelexico-
graphically firstsuch set with positive demand. IfW has no positive demand extreme
subsets, then we select the same vertex ofW that was selected the previous time lex-
lookahead processedW. We assume that the vertices ofG are numbered by a depth-first
search of the tree corresponding to the system of (initial) extreme setsF (note the
vertices ofG are leaves of this tree). We remark that this lookahead step does not yield
successive algorithms.

First we prove that if processed by lex-lookahead, the augmenting edge set of
each phase within a group is the same – recall the augmenting sets could even have
exponentially long periods when processed by balanced-lookahead. We in fact show
a stronger property: under the particular numbering of the vertex set we required, lex-
lookahead selects the same vertexv in an interval of phases:

Lemma 5. Assume that the vertices ofG are numbered by a DFS ordering of the system
of (initial) extreme setsF . Let us consider an extreme-sets based algorithm that uses
lex-lookahead and satisfies (2.B) of Theorem 2. Then the phases when an augmenting
edge is added to a vertexv form an interval.

Proof. Assume an edge is added to vertexv in phaset. Let W be the maximal extreme
set of phaset + 1 with v ∈ W; assumeW has demand at least one and hence another
edges are added to it in phaset + 1. Assume that one of these edges is added to some
w 6= v, w ∈ W. Then the claim follows if we show that no further edges may be
added to vertexv. To show, letU ⊆ W be the minimal extreme set of phaset + 1
containing bothv andw. By (2.B), U is extreme in phaset as well; letU ′ andU ′′ be
its lexicographically first extreme subsets with positive demand in phasest andt + 1,
respectively. Clearlyw ∈ U ′′; to seev ∈ U ′ notice that lex-lookahead is based on
a depth-first search numbering of the tree corresponding to the extreme system and is
hence not affected by deletions of sets. We getU ′ 6= U ′′ by the maximality ofU. The
subsetU ′′ may not exist; in this case all further edges insideU are added tov by the
definition of lex-lookahead. Otherwise again by definition the demand ofU ′ (as well as
any of its subsets) must be 0 and no further augmenting edge may be added toU ′.

ut
Theorem 7. In a sequence of consecutive steps when the positive-demand extreme sets
of the intermediate graphs are the same, we may add the same augmenting edges
to G. The time to find one such edge set isO(n). Hence the augmentation algorithm
with path-increase and lex-lookahead finds an optimum augmentation by computing the
initial extreme sets, a cactus representation of an intermediate graph, and usingO(n2)

extra (sequential) time.
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Proof. Recall that consecutive phases when the system of extreme sets does not change
are called groups. Assume we know the number of phasesτ within a group. Path-
increase can be assumed to select the same edge setE′t by Lemma 4; the setEt given by
lex-lookahead will also be the same over the phases by Lemma 5. Hence we may choose
τEt as the augmenting edge set of the entire group. Lex-lookahead can be performed in
O(n) time by depth-first search on the system of extreme sets. Hence the augmenting
edge set of the group can be found inO(n) time. The number of groups is bounded by
O(n), the number of initial extreme sets.

We show how to computeτ, the number of phases in a group starting at phaset. LetU
be an extreme set withdEt (U) equal 1 or 2. LetU1 be the lexicographically first maximal
extreme subset ofU; let U0 be the maximum demand one distinct fromU1. Assuming
thatU1 is extreme in phaset′ + t, dt ′+t(U) = dt−1(U)+ (t′ + 1)dEt (U). By Lemma 1,
if U is non-extreme, it has an extreme subsetU ′ with dt ′+t(U ′) ≤ dt ′+t(U). Thus by
construction,U becomes non-extreme in phaset′ exactly if dt ′+t(U0) = dt ′+t(U); i.e.
t′(U) = (dt−1(U0)−dt−1(U))/dEt (U). Thenτ is the minimum oft′(U), over all extreme
U with dEt (U) ≥ 1. This value is found by depth-first search again. Note here that this
value may be fractional whendEt (U) = 2; this may mean exceptional cases when the
two edges of phaseτ + t get added to distinct vertices. The number of such exceptional
phases is not more thanO(n), the total number of groups.

ut

4.2. Parallel implementation

We implement our extreme-sets based algorithm with path-increase and lex-lookahead
routines on a PRAM. In the implementation we ignore details about EREW/CRCW,
number of processors and steps other than the fact that there are a polynomial number
of processors and the time used is polylogarithmic. We assume that the initial extreme
systemF is given and that we can compute the cactus representation in the final
phase. We give parallel algorithms for these tasks in Part II. Thecactus-increase
subroutine also requires an Euler tour of the cactus representation; anO(n2)-processor
parallel algorithm to find an Euler tour is in [1]. The numbering of the vertex set
necessary for lex-lookahead can be obtained in parallelO(logn) time withn processors
by computing, say, a pre-order numbering of the leaves of the tree corresponding to all
extreme sets [37].

Similar to the previous sequential algorithm, our parallel algorithm will have the
following high-level steps. First for each vertexv, we compute the intervals when
augmenting edges are added to that vertex as in Lemma 5. By sorting all starting points
of these intervals, we obtain all group boundaries. We compute the maximal extreme sets
of phaset, for all group boundariest; we also compute the two exceptional maximal
extreme sets that receive a single edge by path-increase. Then we can compute the
augmenting edge set for each group in parallel. The final augmenting edge set is the
parallel sum of all these edge sets.

The above procedure will require the following data structure D1–5. As in Section 3,
we let childrent(U) denote the maximal extreme subsets ofU, in phaset. In particular,
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childrent(V) are the current inclusion-wise maximal extreme sets in phaset. Without
the subscriptt, we refer to the initial extreme systemF .

D1 The sets in childrent(V) for all t. By taking the union over all possiblet we get
a sub-tree of the initial system of extreme sets which we denoteT .

D2 For each nodeU ∈ T , a mark by the first phaset whenU ∈ childrent(V). By T
and the marks, childrent(V) is computable for any inputt by a parallel algorithm.

D3 Two sub-paths ofT , which consist of the sets that receive a single edge in path-
increase (there are such paths by Lemma 4).

D4 For each vertexv ∈ V, the interval of phases (as in Lemma 5) when augmenting
edges are added tov.

D5 For allU ∈ T , first(U), the first phase whenU receives an augmenting edge.

Before describing the parallel construction of the above data structure, we notice that
we face the technical difficulty that there are “exceptional” current maximal extreme
sets that get a single augmenting edge in a phase, while the “typical” sets get two
edges. Instead of keeping track of the exceptional sets, we first compute D1–5 under the
assumption that each maximal extreme set receives only one edge per phase. Then we
compute an initial state of the extreme system when all end-vertices are already added
to such exceptional sets. Hence we handle end-vertices added separately as exceptional
and as typical ones.

In summary D1–5 is computed in the following sub-steps:

1. Compute D1, D2, D4 and D5, under the assumption that each (current) maximal
extreme set gets a single augmenting edge in a phase. The parallel implementation
of this step is given at the end of this subsection.

2. Select the two sub-paths ofT as in D3. Start from two maximum demand extreme
sets; recursively select the current maximum demand subset of each element over
the path. In order to selectT , we can compute the current demand of an extreme set
U from its initial demand and first(U). Then the parallel path selection is a pointer
jump operation over this tree (see e.g. [29]).

3. FromT , select all extreme setsU that are maximal subject to not occurring in the
path selected in step 2. For each suchU, offset the phase number by the numbert
of the first phase whenU ∈ childrent(V); for all extreme subsets ofU, use as initial
demands the demand in phaset.

4. Erase fromT all sets selected in step 2. Recompute D1, D2, D4 and D5 for all
remaining sets by modifying the procedure of step 1 such that two edges are added
to each maximal extreme set in a phase.

Next we show how to compute step 1. We use the assumption of Lemma 5 on the
numbering of the vertex set. We will obtain D1, D2, D4 and D5 (under the assumption
of step 1) in a sequence of steps.

4.2.1. Parallel tree operations.Our parallel algorithm is based on pointer jump and
parallel prefix computations over trees. Next we briefly survey the necessary background
as in [29,37,9].

A parallel prefix computationis anO(logn) time parallel procedure that, given an
input sequence of constantsa1, . . . ,an, computes another sequencey1, . . . , yn where



Parallel and fast sequential algorithms for undirected edge connectivity augmentation 615

y1 = a1 andyi = yi−1 ⊕ ai . Here⊕ is an arbitrary associative operation; addition and
maximization are both examples of a prefix computation.

Theleaf fixandroot fixoperations are parallel prefix computations over all subpaths
of a tree; for leaf fix, these paths lead from the root towards the leaves while for root
fix, the orientation is opposite. By the Euler tour technique of [37], these operations
can be reduced to segmented prefix computations over the Euler tour of the tree. Root
fix enables one to compute in parallel a wide variety of functions with constants and
operators stored in trees [29].

4.2.2. An exceptional tree computation: rdem.First of all our algorithm will require
the values rdem(U) for U ∈ F of the initial extreme systemF . Unfortunately the
recursive formula of rdem involves addition and maximization. Since the latter is not
distributive over the former, we may not directly use the root fix operation or the Euler
tour technique as above.

We give the following algorithm to compute rdem. In thei -th parallel step we will
compute rdem(U) for all U ∈ F that has at least 2i−1 and at most 2i − 1 distinct
extreme subsets. We are done if thei -th parallel step runs in polylogarithmic time. This
is trivially the case ifU has no extreme subset of at least 2i−1 further subsets.

Next we turn to the case when some extreme setsU with at most 2i − 1 extreme
subsets have subsetsU ′ with at least 2i−1 extreme subsets. Such setsU ∈ F form
subpaths of the tree corresponding toF . We show that in this case rdem(U) can be
computed in polylogarithmic time for all elementsU1 ⊂ U2 ⊂ . . . ⊂ U` of a subpath,
in parallel. Fori ≤ `, let di denote the sum of rdem(U ′) for all extreme subsets
U ′ 6= Ui+1 of Ui . Then

rdem(Uk) = max { dem(Uk),dk + dem(Uk+1),dk + dk+1+ dem(Uk+2), . . . ,

dk + dk+1 + . . .+ d`−1+ dem(U`),dk + dk+1 + . . .+ d` } ,

where the computation consists of two parallel prefix operations (addition and then
maximization) for eachk ≤ `.

4.2.3. For each extreme setU, we assume thatU is the only set that receives augmenting
end-vertices. For all extreme subsetsU ′ ⊂ U, we compute start(U,U ′), the number of
augmenting end-vertices added toU before any of them is added toU ′. We do a top-down
recursion by computing start(U,Ui ) first for U1,U2, . . . ,U` ∈ children(U):

start(U,Ui ) =
∑
j<i

rdem(Uj ) .

These values can be found by a parallel prefix computation over the sequence of theUi .
Finally the recursive step is a root fix operation. ForU ′ ∈ children(U), let

parent(U ′) = U; then for a fixedU0 and another extremeU ⊃ U0,

start(parent(U),U0) = start(U,U0)+ start(parent(U),U) .
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4.2.4. Under the scenario of Step 2, we compute the maximum number of edges end(U)
that can be added toU so that the demand ofU is larger than any of its extreme subsets.
Assumeτ new end-vertices are added toU; then we can compute the current demand of
any subset ofU by the values of start(U,U ′). Hence forU ′ ⊂ U, we can also compute
the minimumτ (if there is such) when the demand ofU ′ is not less than that ofU. Then
end(U) is the minimum of all these values, over all extreme subsets ofU.

4.2.5. Now we can find all extreme sets that become maximal extreme at some phase
of the algorithm. Hence we can form the sub-treeT of the extreme system as required
in D1. The pointers of the sub-tree are found by a pointer jump operation. All we need
is an easy observation: an extreme setU ′ becomes maximal in some phase exactly if for
all extremeU ⊃ U ′,

end(U) < end(U ′)+ start(U,U ′) .

4.2.6. We compute first(U) (D5), for U ∈ T , by leaf fix. The base operation for an
immediate successorU ′ of U in T is

first(U ′) = first(U)+min{end(U), start(U,U ′)} .
Then we easily get D2: ifU ′ is an immediate successor ofU in T , then the first phase
whenU ′ becomes maximal is first(U)+ end(U).

4.2.7. For each vertexv, compute the interval of phases when an edge gets added to
it (D4). As an auxiliary data, compute for each fixedU ∈ T , v ∈ U the sub-intervals
when an edge is added tov andU is extreme. These intervals can be computed by the
knowledge of first(U) and start(U, w) for all w ∈ U. Then the intervals required in D4
can be formed by taking the minimum of the sub-interval starts and the maximum of
the ends.

5. Proofs of optimality

In this section, we prove (2.B) for three connectivity-increase steps: cactus-increase,
cycle-increase and path-increase; hence we complete the proof of Theorems 4 and 6.
The results of this section can be read independently of Sections 3 and 4; all is required
is the definition of the corresponding connectivity-increase steps.

Throughout the proofs, let graphG′ arise by adding a set of edgesE′ to G.
Observe that in all three cases at most two edges are added to any extreme setW
of G (dE′(W) ≤ 2). We prove the correctness (i.e. that (2.B) holds) by contradiction:
we assumeU is an extreme set ofG′ but not ofG.

The next three lemmas form the base of the analyses. We note here that all we require
for G is that the cut value functiond is symmetric submodular, hence the results of this
section apply ifG is a hypergraph. For more details, see Section 6.

Lemma 6. Let W ⊂ U be an extreme set ofG. ThendG(U) ≤ dG(W) + dE′(W) −
dE′(U)− 1.
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Proof. By definition of extreme inG′, dG′(U) ≤ dG′(W)−1. ExpandingdG′ as the sum
of dG anddE′ gives the result.

ut
Lemma 7. U contains an edge ofE′ and contains or is intersecting with at least two
extreme setsX1 and X2 of G with dE′(Xi ) ≥ 1 for i = 1,2.

Proof. If U is not extreme inG, by definition there is aU ′ ⊂ U with dG(U ′) ≤ dG(U).
If we apply Lemma 6 toU andU ′, we get thatdE′(U ′) ≥ dE′(U) + 1, implying that
there must be an edgee of E′ within U. If e connects the maximal extreme setsX1
andX2, then these sets are either intersecting with or contained byU, as required.

ut
Lemma 8. If U intersects an extreme setW of G, then dE′(W) = dE′(W ∩ U,
U −W) = 2; dE′(U) = 0; anddG(W−U) = dG(W)+ 1.

Proof. By definition of extreme,dG(W − U) ≥ dG(W) + 1. This implies by sub-
modularity thatdG(U − W) ≤ dG(U) − 1. On the other hand, by the definition of
extreme,dG′(U − W) ≥ dG′(U) + 1. Combining the two latter inequalities, we get
thatdE′(U −W) ≥ dE′(U) + 2. Since all edges not counted indE′(U) but counted in
dE′(U −W) connectU ∩W andU −W, there are at least two such edges; furthermore
dE′(W) ≥ 2. SincedE′(W) ≤ 2 by the construction ofE′, equality must hold every-
where, proving the claims.

ut
The first theorem is also found in Naor et al. [32]; we include it here for completeness.

Theorem 8 ([32]).(2.B) holds for the cactus-increase subroutine.

Proof. Let U be an extreme set ofG′ but not of G. By Lemma 7, there is an edge
e ∈ E′ connecting extreme setsW and W′ of G, with e ⊂ U. By the definition of
cactus-increase we may assumedE′(W) = 1. Hence by Lemma 8,W ⊂ U. Now by
Lemma 6,dG(U) ≤ c− dE′(U). ThusdG′(U) ≤ c, contradicting our assumption that
G′ has connectivity(c+ 1).

ut
Theorem 9. (2.B) holds for the cycle-increase subroutine.

Proof. Let G andG′ be the graphs before and after adding the augmenting edges; let
G have connectivityc. The claim is true by Theorem 8 whenE′ is just the output of
cactus-increase. Otherwise letU be a set which is extreme inG′ but not in G. By
Lemma 7,U contains or is intersecting with maximal extreme setsW with dE′(W) ≥ 1.
By the definition of cycle-increase, all suchW havedG(W) = c or dG(W) = c+ 1 as
well asdE′(W) = 2.

First assume that there is aW as above that is intersecting withU. Then by Lemma 8,
dG(W−U) = dG(W)+1, and by Lemma 1,W−U must contain an extreme setU ′ with
dG(U ′) ≤ dG(W)+1. By Lemma 8, we also get that both end-vertices ofE′ in W are in
W∩U; thusdE′(U ′) = 0 sinceU ⊂ W. This contradicts the definition of cycle-increase
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where we require all(dG(W) + 1)-extreme subsetsU ′ of a maximal extremeW with
d(W) ≤ c+ 1 havedE′(U ′) > 0.

Next assume that noW as above is intersecting withU, but there is a maximal
c-extremeW ⊂ U. By Lemma 6,c ≤ dG(U) ≤ c+ 1− dE′(U), thusdE′(U) ≤ 1. By
the algorithm,dG(U) = c impliesdE′(U) ≥ 2 anddG(U) = c+ 1 impliesdE′(U) ≥ 1.
This contradicts the above inequalities.

Finally assume thatU avoids allc-extreme sets, but contains the (unique)(c+ 1)-
extremeW. Since E′ connectsc-extreme sets andW by a cycle,dE′(U) ≥ 2. By
Lemma 1,c+ 1 ≤ dG(U). By Lemma 6,dG(U) ≤ c+ 2− dE′(U), thusdE′(U) ≤ 1,
a contradiction.

ut
Theorem 10. (2.B) holds for the path-increase subroutine.

Proof. In path-increase,d(U`) = d(U1) ≤ d(U2) ≤ . . . ≤ d(U`−1) are the maximal
extreme sets withw(Ui ) ≥ 2; the algorithm selects an edge setE′ = {e1, . . . , è −1}
with ei connectingUi andUi+1. Let U be an extreme set ofG′ but not ofG.

Lemma 9. There exists noi < ` such that both vertices ofei belong toU and both
vertices ofei−1 or ei+1 belong toU.

Proof. Recall that bothei+1 andei have a vertex inUi+1. The claim is immediate if
Ui+1 ⊂ U; elseUi+1 andU intersect and the claim follows by Lemma 8.

ut
Corollary 1. If dE′(U) = 0, then both vertices ofei are contained inU for all i < `

andU ∩Ui 6= ∅ for i ≤ `.
Proof. By Lemma 7 both vertices ofei are contained inU for somei . The claim follows
by applying Lemma 9 inductively for increasing and decreasing values ofi .

ut
Lemma 10. U1,U` ⊆ U.

Proof. By Lemma 8,U does not intersectU1 and U` since by the construction of
E′, dE′(U1) = dE′(U`) = 1. If one of them is contained byU, we getdG(U) ≤
c+ 1− dE′(U) − 1 by Lemma 6; this is possible only ifdG(U) = c anddE′(U) = 0.
By Corollary 1U ∩ Ui 6= ∅ for i ≤ ` then. However by Lemma 1 there is ac-extreme
subsetX of U; d(X) = c impliesw(X) ≥ 2. We reached a contradiction, sinceX should
be included among theUi .

ut
By Corollary 1 and Lemma 10, we get thatdE′(U) ≥ 1. By Lemma 9 and by the

facts thatU1,U` ⊆ U we also get thatdE′(U) ≥ 2 then. By Lemma 8 no extreme set
Ui can intersectU. Let i be minimal such thatUi ⊂ U.

We complete the proof by using the above choice ofUi and exhibiting a maximal
extreme setX with dG(X) < dG(Ui ) and X 6⊂ U. Such anX hasw(X) ≥ 2 and
hence must be equal to someUk for k < `. By the choice ofi , k > i . This provides
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a contradiction with the choice ofE′, sincedG(Uk) ≥ dG(Ui ) for all ` > k > i . To find
this setX, by Lemma 6 we getdG(U) ≤ dG(Ui )+2−dE′(U)−1≤ dG(Ui )−1. Hence
there is an extreme setW ⊂ U of G (by Lemma 1) withdG(W) < dG(Ui ). There must
also be a maximal extreme setX ⊇ W with dG(X) < dG(Ui ) (possiblyX = W). We
reached the desired contradiction.

ut ut ut

6. Hypergraph augmentation

We show that the general augmentation scheme can be applied to the hypergraph
connectivity augmentation problem. For a hypergraphG with vertex setV, we define
the value of a cut(C|C) as the total capacity of the hyperedges containing vertices on
both sides of the cut. The connectivity value is defined as the minimum cut value. We
may define thek-demand of sets, partitions and laminar families in the same way as for
ordinary graphs.

There may be different interpretations of the hypergraph augmentation problem.
Unlike in the ordinary graph case, augmentation is possible either by ordinary or by
hyperedges. The more vertices there are in a (hyper)edge, the more efficient that edge
is in augmenting the connectivity. It turns out that the hardest case for the augmenta-
tion problem is when only ordinary edges are allowed. This most restrictive problem
was completely solved by [2]. For other formulations of the hypergraph augmentation
problem, we refer the reader to [36,13].

We consider a different and in several senses simpler problem. We allow hyperedges
to be added as well. We measure the cost of a hyperedge by its size (number of vertices
contained). However, we only allow asinglehyperedge in the solution. For this problem,
a similar bound as in Theorem 1 can be obtained for the optimum cost. As it is noticed
in [8], this same bound on the augmentation cost is insufficient if no hyperedge is allowed.
We note it here that an independent proof of the single-hyperedge-augmentation result
is found in [5].

Theorem 11. The minimum cost of hyperedges needed to augment hypergraph connec-
tivity to target valuek is max{dem(P, k) : P is a sub-partition}. There is an optimum
solution containing at most one hyperedge.

We will prove this theorem by showing that the extreme-sets based augmentation
algorithm with greedy-lookahead and path-increase steps is optimal in all except for the
last augmentation phases (when path-increase cannot be applied). First of all, we have
to show that the definition of extreme sets makes sense for hypergraphs:

Definition 5. A non-negative valued functiond on subsets ofV satisfyingd(X) = d(X)
andd(X)+d(Y) ≥ d(X∪Y)+d(X∩Y) is calledsymmetric submodular. The hypergraph
cut value function is known to be symmetric submodular. For a symmetric submodular
functiond, X ⊂ V is calledextremeif d(X) < d(X′) for all X′ ⊂ X. The extreme sets
form a laminar family.

Now we notice that neither the lookahead nor the path-increase steps require the
underlying graph be ordinary (with no hyperedges). The proof of Theorem 10 works for
arbitrary submodular functionsd. Hence we may prove the main result:
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Proof. Let the input hypergraph beG, the target connectivity bek. We know that
(2.A–B) holds if we use the path-increase and greedy-lookahead steps to optimally
augmentG to G′ with connectivityk−1 by ordinary edges. LetF ′ consist of the system
of k-extreme sets ofG′. Let e be a hyperedge with one vertex in each set ofF ′. By
Lemma 1, each min-cut ofG′ containsk-extreme sets on both cut sides; thus (2.C) holds
if we add edgee. (2.B) holds vacuously. Finally to show (2.C), notice that the cost ofe
is demG′(F ′, k). The proof is complete by Theorem 2.

ut

Part II: Extreme sets and cactus algorithms

In the second part of the paper, we describe the necessary subroutines (extreme sets
and cactus algorithms) to obtain efficient augmentation algorithms for ordinary graphs.
Notice that we no longer consider the hypergraph augmentation problem. We will
summarize the running times we achieve in the Conclusion (Section 10).

Until recently, there has been few effort in giving efficient cactus and extreme sets
algorithms. Gabow [16] described efficient algorithms for graphs with unit edge weights
based on a surprisingly efficient̃O(cm) time min-cut algorithm [14]. For weighted
graphs, however,̃O(nm) time flow and min-cut algorithms (see e.g. [20,23]) have been
used. The basically only known cactus algorithm by Karzanov and Timofeev [28] (with
slight modifications and improvements in [34]) requires the computation ofn−1 flows.
The extreme sets can be found again byn − 1 flow computations via a Gomory–Hu
tree [21], as described in [32].

The flow-based algorithms seem hard to be improved. There has been a lot of
(unsuccessful) effort in improving Gomory–Hu algorithms ( [23,26,3] etc). The only
positive result is that then − 1 flow computations required to find min-cuts can be
pipelined to a single one. However, the Karzanov–Timofeev cactus algorithm requires
these flows in a specific order that the Hao–Orlin algorithm cannot guarantee.

As for parallel algorithms, it was known for relatively long that min-cuts can be
found by the randomized algorithm of Mulmuley, Vazirani and Vazirani [31]. Based on
this result, Naor and Vazirani [34] described a parallel cactus algorithm. On the negative
side, finding general flows (and hence Gomory–Hu trees) is known to be P-complete.
Prior to our result, no parallel extreme sets algorithm has been known.

The recent breakthrough of Karger and Stein [26] shows that (even all) min-cuts
can be found much quicker that the current best flow algorithms. Provided Monte Carlo
algorithms are allowed, all min-cuts can be found inÕ(n2) time; this algorithm is very
efficient in parallel as well. Recently, Karger [25] also gave anÕ(m)-time algorithm
that finds a single min-cut.

Our most efficient algorithms are based on the Karger–Stein algorithm. One may say
that using a faster min-cut algorithm is a trivial way to improve cactus or extreme sets
algorithms. However as we describe in Section 7, the time to even list all min-cuts can
be�(n3); hence it is a non-trivial task stay within thẽO(n2) time in our algorithms. In
our algorithms, we strongly build on the cactus representation and a recent near-mincuts
representation [3] to efficiently handle the system of cuts found by the Karger–Stein
algorithm.
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Summary of new results

In the bulk of this section we present deterministic, randomized and parallel (RNC)
algorithms for building the cactus representation and the system of extreme sets. Our
algorithms are based on the new approaches to find min-cuts, and in particular on the
contraction-based algorithms of [24,26].

The most important new results are Monte Carlo algorithms for finding extreme sets
in RNC and in sequential

Õ(n2 min{n, log(τ/c), log(nU/c)})
time, with high probabilities. Notice that our augmentation algorithm is the first, where
computing extreme sets is the computational bottleneck. Our sequential algorithms
(Section 8) rely on the Karger–Stein algorithm [26] and the near-minimum cuts data
structure of [3] that efficiently handles the output of the Karger–Stein algorithm. The
parallel algorithm (Section 7.2) is based on the previously unknown property of the
contraction algorithm of Karger [24] that it finds a collection ofO(n3) sets that include
all extreme sets. Our results indicate that finding extreme sets is a much simpler task
than finding a Gomory–Hu tree, in a similar manner as finding min-cuts is easier than
computing flows.

We present efficient cactus algorithms based on both the Hao–Orlin and the Karger–
Stein algorithms. Recently Lisa Fleischer [11] showed that the Hao–Orlin algorithm can
be turned to an efficient cactus algorithm with (deterministic) running time isÕ(nm); an
Õ(n2)-time Monte Carlo cactus algorithm based on the Karger–Stein algorithm is given
in [27]. Independent of these two results, we give a somewhat different cactus algorithm
based on a slight modification of the Karzanov–Timofeev cactus algorithm [28]; our
specific implementations match the time of [11,27]. The advantage of our algorithms
is that they are based on a general framework that may be compatible with potential
new min-cut algorithms. While our presentation of the Hao–Orlin implementation in
Section 9.4 is brief and we refer to [11] for more detail, we give the full details of our
Karger–Stein based algorithm in Section 9.5.

7. Randomized contraction-based connectivity algorithms

In this section, we describe the Karger–Stein algorithm. We start by describing its main
subroutine, thecontraction algorithmof Karger [24]. In the discussion of the contraction
algorithm, we also show the previously unknown fact that the contraction algorithm can
find the extreme sets. Our parallel extreme sets algorithm (Section 7.2) is based on this
fact.

7.1. The contraction algorithm

Karger [24] describes thecontraction algorithmas follows. We repeatedly pick a random
edge2 of the existing graph and contract its end-vertices. The procedure terminates when

2 For graphs with edge capacities we replace a capacityu edge by a set ofu unweighted parallel edges;
uniform random selection is then made among the multi-edges. For more details see [24].
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the graph hask ≥ 2 remaining vertices;k is a parameter given in advance. A cutsurvives
the contractionsif no cut edge is contracted, i.e. if the two vertices of the final graph are
the contracted sides of the cut.

Theorem 12 (Karger [24]). A fixed min-cut survives contractions tok ≥ 2 vertices
with probability�(n−2).

ut
We will need the following extension to this theorem, which we prove below. The

proof is almost exactly as that of Theorem 12. In the lemma below, notice the difference
that contraction totwo vertices is not allowed.

Lemma 11. LetG have an exceptional vertexv such that all cuts ofG except(v|V−v)
have value at least̃c (d(v)may be arbitrarily low). Then a fixed cut with valuec̃ survives
contractions tok ≥ 3 vertices with probability�(n−2).

Proof. An intermediate contracted graph withk vertices has at least(k− 1)c̃/2 edges,
since eachw ∈ V − v corresponds to a vertex subset of the initial graph and thus
d(w) ≥ c̃. On the other hand, the fixed cut(C|C) containsc̃ edges, provided it has
survived contractions up tok vertices. Hence the probability that(C|C) does not survive
the contraction to the next(k− 1)-vertex graph, given that it has survived contractions
up tok vertices, is at most

c̃

(k− 1)c̃/2
= 2/(k− 1) .

Hence the probability that(C|C) survives contractions to three vertices is at least(
1− 2

(n− 1)

)(
1− 2

(n− 2)

)
· . . . ·

(
1− 2

4

)(
1− 2

3

)
= 2

(
n−2

)
.

ut
Finally, we show that the contraction algorithm finds not only min-cuts, but extreme

sets as well. By running the contraction algorithm until the graph is contracted to two
vertices, we consider alln − 2 sets that ever get contracted to a single vertex in this
procedure. By the next theorem, these sets will be our extreme sets candidates.

Lemma 12. In the contraction algorithm, a fixed extreme setU is contracted to a single
vertex before any of the edges leavingU gets contracted with probability�(n−2).

Proof. If we contractU to a single vertex for an arbitrary extreme setU, (U|U) becomes
the (unique) min-cut of the contracted graph. If we apply the contraction algorithm to this
graph,U survives contractions with probability�(|U|−2) = �(n−2), by Theorem 12.
This means that if we apply the contraction algorithm to theoriginal graph,U is
contracted to a single vertex before any edge of the boundary ofU is contracted, with
probability�(n−2).

ut
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We also mention another result of Karger [24] relating to Theorem 12. The con-
traction algorithm can be used to find cuts with value withinαc, i.e. withinα times the
minimum. Here the same calculations as in the proof of Lemma 11 give a probability
of 2(2−2α) for such a cut to survive contractions tod2αe vertices.

All four of the above results can be applied as follows. We repeat the contraction
algorithm2(n2 logn) times (in parallel). In the case of cuts within valueαc, we increase
this amount to2(n2α logn). Then the probability that a fixed min-cut or extreme set
is found is 1− poly−1(n). Since there areO(n) extreme sets andO(n2) min-cuts, this
proves that all of them are found, with high probability.

In Section 7.3 we present a more efficient way to apply the contraction algorithm for
finding min-cuts. Next we give a parallel implementation of the contraction algorithm
to find extreme sets.

7.2. A parallel (RNC) extreme sets algorithm

We are left with the following task to solve. The independent runs of the contraction
algorithm produce a systemS of 2(n3 logn) candidate extreme sets (n − 1 per each
run). Then the non-extreme sets have to be removed fromS. A straightforward way to
select extreme sets is to compare all pairsS1, S2 ∈ S; if S2 ⊂ S1 andd(S2) ≤ d(S1),
thenS1 can be removed fromS. Assume that initiallyS contains all extreme sets. Then
by Lemma 1, for all non-extreme setsS1 ∈ S there exists an extreme setS2 satisfying
the above pair of inequalities. Hence the remaining sets will all be extreme. This results
in an algorithm that – although not in a very efficient way – finds all extreme sets. We
give improved extreme sets algorithm in Section 8.

We are ready to present the first known parallel (RNC) algorithm to find extreme
sets. First we get the systemS of candidate extreme sets as in the previous section as
follows. A parallel implementation of the randomized contraction algorithm is given by
Karger [24]. We select2(n2 logn) random sequences to run the contraction algorithm
with. Then for all the sequences and the valuesk = n,n− 1, . . . ,2 in parallel, we run
contractions tok vertices by the parallel algorithm of Karger. Thus by selecting the last
newly created contracted vertex in each of the runs, we get the systemS.

Finally, we compare all candidate extreme sets pairs in parallel. We assignn pro-
cessors for each pair of candidate sets, one for each graph-vertex. In parallelO(logn)
time, we may decide then if one element of the pair contains the other. If for anS∈ S
we find another suchS′ ∈ S with S′ ⊂ S, d(S′) ≤ d(S), then we markSas non-extreme.
By removing all marked sets, we are left with the system of extreme sets. Finally, the
pointers of the extreme system can be built as follows: for all extreme setsU in parallel,
we select the minimal extreme set containingU. This completes our algorithm.

7.3. The Karger–Stein algorithm

The Karger–Stein algorithm [26] finds all min-cuts in timeO(n2 log3 n). This algorithm
can be modified to find all cuts with value at mostαc, wherec is the connectivity andα
is a constant. The running time becomesÕ(n2α). These running times are surprisingly
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low, if we notice the following. The number of min-cuts can be as large as�(n2)

([10] and [24]). Hence the space needed to list all min-cuts may be�(n3). Hence the
Karger–Stein algorithm runs in “sub-linear” time, i.e. it must produce some kind of
representation of the min-cuts with̃O(n2) size.

In algorithmic applications that need all min-cuts, one has to be very careful with
applying the Karger–Stein algorithm. Both the cactus-increase step and (as we will see
it in Section 8) our efficient extreme sets algorithms need access to all min-cuts. It turns
out that the output of the Karger–Stein algorithm itself is (most likely) insufficient to
provide the necessary access to all cuts. Hence algorithms that turn the output of the
Karger–Stein algorithm to other representations with easier access to cuts are crucial
in our applications. One such algorithm is the cactus algorithm of Section 9.5; another
is the recentnear-mincutsrepresentation of Benczúr [3]. We crucially build on this
representation in our extreme sets algorithm (Section 8.3).

Let us have a closer look at the Karger–Stein algorithm itself and the representation
of min-cuts given as its output. The algorithm builds a collection of binary treesTi ,
i = 1, . . . , t as follows. For a graphG0 with n0 vertices on the current leaf level of
someT = Ti , the two new children will contain graphs withn0/

√
2 vertices. These

two graphs arise by applying the contraction algorithm of the previous subsection twice
for G0. The final leaves ofT contain graphs with two vertices, or equivalently, a two
sides of a cut, each contracted to a single vertex.

We remark that in the cases of second minimum cuts or cuts with value withinαc,
we have to modify the algorithm. First of all we terminate contractions with more than
two vertices as in the corresponding cases of Section 7.1; all cuts defined by partitions of
these two or more vertices are found by the algorithm. Furthermore for a constantα ≥ 1,
we contract ann0-vertex graph ton0/

2α
√

2 vertices. The running time then increases to
Õ(n2α).

As Karger and Stein [26] show, a fixed min-cut survives all contractions up to at
least one of the leaves with probability�(1/ logn). Hence by settingt = 2(log2 n),
the leaves of the trees will contain all min-cuts with high probability.

To achieve the very efficient running time, it is crucial that for an intermediate graph
G0, we may spend onlyO(n2

0) time for contraction. But in that case ifn0 = o(n), we
are not allowed to carry information on theoriginal graph. Hence at a vertexv of G0,
all we know is the set of vertices in the parent ofG0 that are contracted tov. Vertices of
a cut can be “unwrapped” by traversing the path up to the root.

So far, we have discussed how the Karger–Stein algorithm finds all min-cuts. It
remains open whether it could find the extreme sets as well. Note that finding the
extreme sets is the bottleneck of both of our sequential (randomized) and parallel
algorithms. Hence such an application of the Karger–Stein algorithm could improve the
augmentation problem.

8. Sequential algorithms to find extreme sets

We describe two extreme sets algorithms. The first algorithm with running time
Õ(n2 min{τ,n}) (Section 8.1) is based solely on finding min-cuts and serves as an
illustration of the main ideas in an extreme sets algorithm. Our second extreme sets
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algorithm (Section 8.3) uses the Karger–Stein algorithm to find cuts within a multi-
plicative factor of the minimum: extreme sets are repeatedly extracted from all cuts of
value betweenδi−1 · c andδi · c, for i = 1,2, etc. TheÕ(n2 log(U/c)) running time of
this algorithm is thus dependent on log(U/c), whereU is the largest edge weight in the
input graph. Notice that one may expectU andc be within a polynomial factor of one
another, in which case the running time is justÕ(n2). Our algorithm uses thepolygon
representationof all such cuts [3] as a query structure to the Karger–Stein algorithm.

8.1. A first sequential randomized algorithm

In our first sequential algorithm, we build on the fact that the minimum weight extreme
sets of a graph are all minimal min-cut sides. This fact is noticed by Naor et al. [32].
Hence the first step of our algorithm is easy: we build the cactus representation of all
min-cuts by the algorithm of Section 9.5; then we use another observation of Naor et
al. [32] that the minimum weight extreme sets are precisely the degree-two nodes of the
cactus.

We continue with finding heavier extreme sets. Recall that a setX is calledd-extreme
if X is extreme withd(X) = d. Assuming that we have found alld′-extreme sets over
all d′ < d, we aim to recurse over all maximal sets of verticesM such that for all known
extreme setsX, M ⊆ X or M ∩ X = ∅. Such setsM form a partition ofG’s vertex
setV. In order to find the next level of heavierd-extreme sets, we consider a graphGM

with V − M contracted to a single vertex. If the connectivity value of this graph isd,
then we findd-extreme sets as min-cut sides as before. However,GM may have a single
min-cut(M|V − M) with d(M) < d; then the next level of heavier extreme sets within
M correspond tosecondminimum cut sides ofGM .

We give a procedure to selectd-extreme sets from the second minimum cuts of
a graphGM that has a unique min-cut with a single vertex on one side. We saw in
Lemma 11 and Section 7.3 that the Karger–Stein algorithm can be used to find the
second minimum cuts of valuẽc in the aboveGM . However, we may no longer build
a cactus representation to find the extreme sets. Instead, we describe a direct method
similar to the cactus algorithm of [26]. The Karger–Stein algorithm buildsO(log2 n)
binary treesTi whoseÕ(n2) leaves contain the candidate sets. Our procedure is an
upwards recursion over these trees.

Given that the Karger–Stein algorithm has output all second-minimum cuts ofGM ,
we select a subpartition of candidate extreme sets for each intermediate contracted
graphG0. Let G1 andG2 be the two contracted subgraphs ofG0. Consider the union of
extreme candidates selected forG1 andG2. We may assume that none of the candidate
setsC contain the contracted vertexV − M: V − M is the unique min-cut side inGM ,
implying thatC is not extreme. If any two such setsC andC′ intersect, we claim that
both of them can be removed. Notice thatC−C′ 6= V−M, C′ −C 6= V−M and they
cannot be equal toM either since one of them would then beV. Thus by submodularity

2c̃≤ d(C−C′)+ d(C′ −C) ≤ d(C)+ d(C′) = 2c̃ .

This implies that neitherC nor C′ is extreme and they can both be removed from the
system of candidate extreme sets. Finally we also remove a setC if another setC′ ⊂ C
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is contained in the candidate system, since such sets cannot be extreme. Once all these
pairs are eliminated, we are left with a subpartition of the setM.

If we show that in ann0-vertex graphG0 the above procedure can be performed in
O(n2

0) time, we get that we spend̃O(n2) time for each treeTi : recall from Section 7 that
we may stay within the time bound of the Karger–Stein algorithm if we spendO(n2

0)

time to process ann0-vertex intermediate graph. Finally, the extreme candidates of the
log2 n roots of trees{Ti } can be merged two at a time by the exact same procedure, in
O(n2) time each.

Now we give the procedure of eliminating non-extreme sets from the candidate
systemsF1 andF2 found in the two contracted subgraphsG1 andG2 of G0. We assume
that bothF1 andF2 are subpartitions ofV − M; we output another subpartition of
V − M as a subset ofF1 ∪ F2. We represent a subpartitionF = {X1, . . . , Xr } by
a vector(x1, . . . , xn0) wherexi = j if the i -th vertex ofG0 is contained inX j . We use
a special null symbol if this vertex is not in any of the sets. First of all, we start with
F1 andF2 as subpartitions ofG1 andG2; we may uncontract these graphs to obtain
the required vectors inO(n0) time. Then by using the vector representingF2, we may
in O(n0) time decide if a given elementC ∈ F1 intersects or contains some element
of F2. For all C ∈ F1 the operation takesO(n2

0) time. The procedure is completed if
we apply the last steps by exchanging the role ofF1 andF2.

In summary we can find the next level of heavier extreme sets within a given subset
M in randomized timeÕ(n2

M), wherenM denotes the number of vertices ofGM .
Observing that

∑
M nM ≤ 2n, we derive that the total time necessary to find the next

level of extreme sets over all such setsM is Õ(n2). We proceed recursively; two upper
bounds on the maximum depth of the recursion areτ = k− c if we are interested in
d-extreme sets withd ≤ k only, and the boundn on the depth of the extreme system.
This gives us the randomized running time

O(n2 log3 n min{τ,n}) .

8.2. The polygon representation of near-mincuts

We aim to improve the previous algorithm by considering cuts within aconstant times
the minimum instead of (second) minimum cuts. Notice that the Karger–Stein algorithm
is capable of finding all such cuts. The main achievement we will thus get is that the
running time dependence onτ can be replaced by a dependence on log(τ/c).

The obvious choice of the improved algorithm is to run the Karger–Stein algorithm
and find the extreme sets by an upward recursion in its output. In the case of (second)
minimum cuts, we were able to use submodularity to discard non-extreme sets. In
a similar approach, two intersecting close-minimum cutsC andC′ must have either
d(C− C′) ≤ d(C) or d(C′ −C) ≤ d(C′) – but not necessarily both. In order to decide
which is the case, we have to know values of cuts that we do not necessarily have
located in the output of the Karger–Stein algorithm. Hence each of these “uncrossing”
operations may take�(m) time and we may have to spend�(mn2

0) � n2
0 time on an

intermediate contracted graphG0 with n0 vertices.



Parallel and fast sequential algorithms for undirected edge connectivity augmentation 627

K

D

E

F

G

H

J

AB
C

Fig. 3. The cactus representation of Fig. 1 turned to a polygon representation. The three thick lines separate
the representation into three sub-polygons, each of which is corresponding to a single cycle of the cactus

The actual algorithm to select extreme sets from close-minimum cuts is more com-
plex. The main tool we need is a representation for all cuts within a constant times
the minimum, in which it takesO(1) time to get the value ofd(C − C′), for givenC
andC′. Thepolygon representationof Benczúr [3] has this property; we describe this
representation now. We say a cut is anα-near-mincutif its value is less thanαc. We con-
siderα-near-mincuts forα ≤ 6/5. In the representation, the system ofα-near-mincuts
is divided into subsetsC1, . . . , C`. All we need to know about these subsets is that no
cut of one subset may cross a cut of another one (we mentioned this same property of
the cactus representation in Section 9.1). Now each subsetCi possesses arepresenting
polygondefined next. In Fig. 3 we give an example of a single representing polygon
corresponding to the set of all min-cuts of the graph in Fig. 1.

– A representing polygonPi is a polygon with a collection of distinguishedrepresent-
ing diagonals, with all polygon-edges and diagonals drawn by straight lines in the
2D plane.

– The representing diagonals dividePi into cells.
– The vertex setV is partitioned intoatoms; each atom is mapped to a cell ofPi .

However, some cells may contain no atoms (typically, most of them are empty).
– Each representing diagonal defines a cut, with sides as the union of atoms contained

by cells on the diagonal sides.
– The collection of cutsCi equals to the collection of cuts defined by representing

diagonals of the polygon.
– An array with one entry for each pair of polygon-vertices stores the fact whether

the diagonal connecting the pair of vertices is present. If the diagonal is present, the
value of the corresponding cut is also stored.

In [3] two key facts are shown. First, the total number of polygon-vertices in all polygons
is O(n) (whence it follows that there are at mostO(n2) 6/5-near-mincuts). Second, the
polygon representation can be built by the Karger–Stein algorithm, with exceeding its
running time bound only by a factorO(logn).
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8.3. An improved extreme sets algorithm

We show that alld-extreme sets withd ≤ αc can be selected from the polygon repre-
sentation of allα-near-mincuts in (deterministic)O(n2 logn) time [3,4]. This implies
that allk-extreme sets can be found by recursing in contracted graphsGM – as in the
algorithm of Section 8.1. The running time of our algorithm based on this idea can be
determined as follows. In thei -th step we find alld-extreme sets withd < αi · c by
settingα = 1+ 1/ logn < 6/5. This step requires the computation of the polygon
representation in randomizedO(n2+2/ logn log4 n) time. Provided we want to find all
d-extreme sets withd< k, we need to takeO(log(1+1/ logn)(k/c)) such steps. This totals
to

O
(
n2 log5 n log(k/c)

)
,

which yieldsÕ(n2 log(U/c)) if we notice that there are nod-extreme sets withd> nU.
We select the extreme sets among represented near-mincuts as follows. For each

representing polygonPi , we select a laminar familyFi containing all extreme sets
represented by that polygon; we record the valued(C) for eachC ∈ Fi . For the entire
collection of polygons,F0 = ⋃

i Fi is a cross-free family since no pair of cuts from
different polygons may cross. Then it is trivial to remove non-extreme sets fromF0 in
O(n2) time.

We show how to findFi in O(n2
i ) time, whereni is the number of polygon-vertices

in Pi . We maintain a laminar familyF which is initially empty. We scan allO(n2
i ) sets

C with d(C) ≤ αc represented byPi one-by-one. We show thatC can either be added
to F or it can be proved thatC is non-extreme, in amortizedO(logn) time. This will
complete the analysis.

For a fixed laminar familyF and a setC such that all sets correspond to diagonals
in Pi we select all diagonals ofF crossingC; this takes timeO(|F |). If there are no
such sets, we addC to F . Otherwise for aC′ ∈ F crossingC, we check if there is
a diagonal corresponding toC − C′ and another toC′ − C. Hence we may decide in
constant time whetherd(C) ≥ d(C−C′) or d(C′) ≥ d(C′ −C); one of the two holds by
the submodularity ofd. Hence in constant time, we may removeC or C′ fromF +C.

The above procedure may take|F | = �(n0) time for each setC. We improve on
this by considering the systemS of sets incident to the same polygon-vertexA at once.
Provided we manage to handle one polygon-vertex in timeO(n0 logn), we spend an
amortizedO(logn) time per diagonal. This completes the analysis of our extreme sets
algorithm.

Consider the two laminar familiesF andS as above. Each time a crossing pair in
S ∪ F is detected, we may remove one set fromS ∪ F ; thus the maximum number of
crossing pairs that have to be detected becomesO(n0). In O(logn) time we will either
find a crossing pair or conclude that some element ofF crosses none ofS. Remember
that all diagonal sides inS share a polygon-vertexS; we may assumeS is sorted around
this vertex. Let a diagonalAA′ belong toF . Then we may inO(logn) time insert the
diagonalsASand A′S into the sorted listS. Then the elements ofS crossingAA′ are
precisely those betweenASandA′S in this order. This shows that extreme sets can be
extracted from the polygon representation inO(n2 logn) time.
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9. Computing the cactus representation

In this section, first we describe a general cactus algorithm that may potentially serve
as a base for implementations based on new min-cut algorithms as well. The general
algorithm is a slight generalization of the Karzanov–Timofeev algorithm [28] (also
see [34]). Then we show that this algorithm can be implemented by running either the
Karger–Stein [27] or the Hao–Orlin [23] algorithms that produce all min-cuts. Notice
that theÕ(n2) andÕ(nm) running time of these algorithms is less than theO(n3) time
to list all min-cuts. Hence we have to be careful and not access all the min-cuts when
we build the cactus representation. Our cactus algorithms will match the time bound
of the corresponding min-cut algorithms. While we describe our Karger–Stein based
algorithm in full detail in Section 9.5, the Hao–Orlin based implementation is only
sketched in Section 9.4 and the reader is advised to check for a full implementation in
Fleischer [11].

9.1. Cactus representation: uniqueness

Recall that the cactus representation of all min-cuts consists of a cactus graphK such
that a partition ofV is mapped to certain cactus-vertices. Consider the partitions ofG’s
vertex set intoC andC arising by deleting a pair of edges of the same cactus-cycle and
considering the vertex sets mapped to each side. The min-cuts ofG are precisely the
(C|C) defined in this way.

The cactus representation as defined above is not uniquely determined. First, we
may always choose a cycleC and on of its verticesk. We may then subdividek into
a pair of new verticesk′ andk′′ connected by a length two cycle such thatk′ belongs
to cycleC while k′′ is incident to all remaining edges (Fig. 4, left). All graph-vertices
previously mapped tok are now mapped tok′′. Second, we may replace a length three
cycle on verticesu1, u2 andu3 by making a new vertexk with no graph-vertices mapped
to it and then creating three new cyclesk,ui (i = 1,2,3) of length two.

We will use the definition of [34] that uniquely determines the cactus representation.
Roughly speaking, we will perform both of the above two changes as long as no cut is
represented more than once. We say that

– a length two cycleC represents the single cut defined by the sides of the cactus
arising by deleting the edges ofC; while

– a cycleC of length at least four represents all cuts arising by deleting twonon-
adjacentedges ofC.

A

B C

EF

A

B C

D

EF

DO/

B
B

C

O/AA

C

Fig. 4.Two transformations of cactus representations that show the representation is not uniquely determined
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We disallow cycles of length three and require each cut be represented as in the above
definition exactly once. Notice that cuts represented by distinct cycles may not cross
each other. Now min-cuts represented by length two cycles are exactly those that do not
cross any other min-cuts and the subsets of cuts represented by the same cycle give the
finest partition of the set of min-cuts so that cuts of distinct sets do not cross each other.
For the remaining details see [34] or [4].

9.2. The residual cactus

We start by giving a base of algorithms for building the cactus representation: a recursive
procedure that, given a cactus representation of a graph with two verticesv1 andv2
contracted and the collection of all min-cuts separatingv1 from v2, yields the cactus
representation of the initial graph. Our procedure is similar to the cactus algorithm of
Karzanov and Timofeev [28]; there the pair of verticesv1 andv2 is selected by a special
rule that our procedure will not require.

In the bulk of Section 9, letG be the input graph and letK be its unique cactus
representation as defined in Section 9.1. Letv1 andv2 be two vertices ofG; let graphG′
with cactus representationK′ arise by contractingv1 andv2 to a single vertex inG.

While our aim is to build the cactus representationK fromK′ , we start our discussion
with an opposite process: givenK, we describe the collection of min-cuts separating
v1 andv2. All these cuts are described by the residual cactusKv1,v2 arising fromK as
defined next.

Definition 6 (Residual cactus).LetK be the cactus representation of a graphG, let
v1 andv2 be a pair of vertices. Consider the shortest pathP from the cactus-vertexk
containingv1 towardsk′ containingv2 as well as the next shortest pathP ′ in K − P
(see Fig. 5). Theresidual cactusKv1,v2 is a cactus graph arising by the contraction of
all cactus-edges other thanP ∪P ′.

In what comes next, first we prove that the residual cactus is a cactus representation
of a subcollection of min-cuts that includes all those separatingv1 from v2; then in
Lemma 14 we show howK and the residual cactus (Fig. 5) determineK′, the cactus
representation ofG′ arising by contractingv1 andv2 (Fig. 6). The opposite procedure is
used in Algorithm 3 to buildK fromK′. The first lemma also characterizes the residual
cactus as a “path” of cycles.

Lemma 13. The residual cactusKv1,v2 is a cactus graph consisting of cyclesC1, . . . , Ct

that can be numbered such thatC j andC j+1 are adjacent for1 ≤ j < t, and there are
no other adjacent cycle pairs. A pair of verticesk ∈ C1 andk′ ∈ Ct containv1 andv2,
respectively (see Fig. 5). The residual cactusKv1,v2 represents all min-cuts separating
v1 fromv2.

Proof. After deleting edges of pathP (the shortest one betweenv1 andv2), the path
from v1 to v2 without vertex repetition is uniquely defined as the remaining edges of all
cyclesCi for i ≤ t that contain edges ofP . If a cycle does not contain edges of pathP ,
then it is contracted in the residual cactus. Thus the residual cactus consists precisely
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k

k’

Fig. 5. The cactusK and the cycles (thick) ofP ∪P ′ that define the residual cactusKv1,v2. Cactus-vertices
k andk′ containv1 andv2, respectively

of the Ci . If we number them by the sequence visited byP , we get a numbering as
required. Finally for the last part, notice that any cut separatingv1 andv2 also separates
k andk′.

ut
Now we complete our goal: we buildG’s cactus representationK fromKv1,v2 and

the cactusK′ of G′ arising by contracting two of its verticesv1 andv2 (Figs. 5 and 6).
The algorithm below builds a cactus representation where all cuts fromK′ as well as
fromKv1,v2 are represented. Hence this cactus isK.

We use the following notation. Let cyclesCi and two distinguished cactus-vertices
k andk′ containing verticesv1 andv2, respectively, be as in Lemma 13. LetP be the

Fig. 6. The cactusK′ arises by modifying the cycles (thick) of the residual cactusKv1,v2 in Fig. 5. Shaded
vertices are all joined to a single cactus-vertexu containing bothv1 andv2. The components adjacent tou
are those incident to the thick cycles as well as the two dotted components
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shortest path ofK connectingk andk′; let ki be the unique vertex ofP that belongs
to bothCi andCi+1, for i < t. Let k0 = k andkt = k′. If the two verticeski−1 andki

are non-incident, let two cyclesC ′i andC′′i arise by contractingki−1 andki in Ci ; else let
a single cycleC′i arise by contractingki−1 andki again.

Lemma 14. The cactus representationK′ arises by (i) contracting allki for 0 ≤ i ≤ t
to a single vertexu; and (ii) for each length three cycle arising in this way, contracting
the two vertices different fromu to single new vertices (and thus obtaining length two
cycles).

Proof. By Lemma 13, the contraction procedure removes all cuts separatingv1 andv2.
We show that no other min-cut gets removed. We contract each cycleCi into (possibly
two) smaller cycles; these cycles represent all cuts not separatingv1 andv2. If any of
these cycles is of length three, the only cut represented by this cycle (not arising by
the removal of two incident cactus-edges) arise by the removal of the two cactus-edges
adjacent to the contracted vertices. These cuts are represented by the length two cycles
as described. This proves the theorem.

ut
Algorithm 3. The cactusK arises fromK′ andKv1,v2 as follows.

1. FromKv1,v2, we build the cyclesC′i andC′′i . We replace each length three cycle by
a length two one.

2. All cyclesC′i andC′′i inK′ are joined at a single cactus-vertexu as in Lemma 14. We
find all these cycles and vertexu in K′.

3. We cutK′ into the set of components adjacent tou (as in Fig. 6).
4. We arrange all components containing aC ′i or C′′i by formingKv1,v2 from theC′i

andC′′i .
5. Finally we have to join the remaining componentsC (that do not containing anyC ′i

orC′′i ) to one of the residual cactus verticeski . We do this by picking a graph-vertexw
corresponding to componentC and for eachi ≤ t selecting a cut(Ai |Ai ) separating
ki−1 andki with v1 ∈ Ai andv2 ∈ Ai . We join componentC to the following vertex
of Kv1,v2:
– kh if w ⊂ Ah+1− Ah;
– k = k0 if w ⊂ A1;
– k′ = kt if w ⊂ At .

ut

9.3. The Karzanov–Timofeev algorithm

We mention the main difference between the Karzanov–Timofeev algorithm [28] and
our general cactus-building procedure. While the Karzanov–Timofeev algorithm uses
a notion similar to our residual cactus, their residual cactus is assumed to have a very
simple structure. Namely, they assume that each pairv1, v2 ever arising in their algorithm
have an edge connecting them. Notice that this assumption can be made whenever the
input graph is connected. ThenKv1,v2 has the following simple structure:
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Lemma 15 (Karzanov and Timofeev [28,34]).If there is an edge connectingv1
andv2, then the shortest pathP of the cactus fromv1 to v2 contains at most one edge
from each cycle. Hence the system ofs min-cuts{(Ai |Ai )} separatingv1 andv2 form
a chain withA1 ⊂ A2 ⊂ . . . ⊂ As; s= O(n).

ut
In Lemma 14 we saw that the cyclesCi of the residual cactusKv1,v2 can be turned

either to a single cycleC′i or to two cyclesC′i andC′′i of K′. Lemma 15 implies that in
the scenario of the Karzanov–Timofeev algorithm the first case must hold for alli ≤ t.
This fact can be used to simplify Algorithm 3.

9.4. The Hao–Orlin algorithm

The Hao–Orlin algorithm performs the Goldberg–Tarjan max-flow algorithm [20,19]
for source–sink pairswi and{w1, . . . , wi−1}, in some permutation{w j } of the vertex
set. The novelty of this algorithm is that the flow computations are pipelined so that the
sequence ofn− 1 max-flow computations terminate within the time bound of a single
run of the Goldberg–Tarjan algorithm. Hence min-cuts are found inÕ(nm) time, an
amount less than the potential space to list all min-cuts. It is true but not entirely obvious
that the Hao–Orlin algorithm finds all min-cuts; these min-cuts are described by the
Picard–Queyranne representation [35].

In what follows next, we show how to build the cactus representation from the
output of the Hao–Orlin algorithm, thus yielding a deterministicÕ(nm)-time cactus
algorithm. In order to do this, we build the residual cactusKv1,v2 from the output of a
v1–v2 max-flow computation. Unfortunately in the algorithm below we may not use the
simplifying assumption of Karzanov and Timofeev (Lemma 15): the permutation{w j }
of the vertex set is part of the output of the Hao–Orlin algorithm and cannot be given in
advance.

A main tool for building the residual cactusKv1,v2 is the representation of Picard
and Queyranne [35] for all cuts with minimum value separatingv1 andv2. Notice that
if there exist min-cuts separatingv1 andv2 at all (i.e. the max-flow value equalsc), then
the system of cuts contained by the Picard–Queyranne representation are all included
in Kv1,v2. Else if there are no min-cuts separatingv1 andv2, then thev1–v2 max-flow
value is more thanc and thenv1 andv2 will always belong to the same node of the
cactus representation.

The Picard–Queyranne representation is as follows. For a maximumv1–v2 flow in
graphG, one defines a residual flow as a directed graph arising by orienting some edges
of G. We orient all edges that are not saturated (i.e. the amount of flow carried is less
than the weight of the edge) in the direction of the flow carried; we also orient all edges
that carry a positive amount of flow in the reverse direction (so some edges can be
oriented both ways). Av1–v2 min-cut may only have backwards edges (from the side
of v2 towards the side ofv1); hence nov1–v2 min-cut may divide a subgraph of positive
directed connectivity (i.e. a strongly connected subgraph) in the residual graph. Linear
time algorithms that find these components are known [9]; after contracting all these
components to single vertices, the resulting graph is a so-called DAG with no directed
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cycle. This DAG is the Picard–Queyranne representation; in this DAG, all min-cuts can
be found as bipartitions with backward edges only (see [35] or [17]).

The Picard–Queyranne representation can be transformed to the residual cactus
Kv1,v2 as follows. First of all we notice that the vertex set of the DAG is equal to the
partition{V1, . . . ,V`}mapped to the cactus-verticesKv1,v2: both of these partitions are
equal to the coarsest partition in which no element is divided by any min-cut. Thus we
have to turn the directed edges of the Picard–Queyranne representation to cactus-edges.

Recall thatKv1,v2 consists of a collectionC1, . . . , Ct of cycles withCi andCi+1
sharing a vertex, for alli < t. We transform the DAG toKv1,v2 in two steps. First we
sort the set system{Vh} such that for a pair of its non-empty sets,Vh′ comes beforeVh

if there are cyclesCi andC j with i < j , Vh mapped toCi andvh′ mapped tok′ ∈ C j .
In a topological sortof the DAG, it is easy to see that the setsVk have the required
property. A topological sort means a linear arrangement of a DAG’s vertex set such that
there are no forward edges; a topological sort can be performed inO(m) time [9].

In a topological order of the DAG-vertices, the setsVh that belong to a fixedCi form
an interval of the topological order. Consider the verticeski−1 andki shared byCi and
Ci−1, respectively byCi andCi+1.

– If these vertices are of distance at least two inCi , then the topological order of this
interval is not unique: we may merge vertices over the two paths betweenki−1 and
ki arbitrarily. This property identifies the vertices of all such cyclesCi .

– Otherwise (ifki andki−1 are incident) the topological order of theCi -vertices is
unique.

All left to be done is to determine the length of the cycleCi . Notice that all incident
pairs of vertices over the path betweenki−1 andki havec/2 edges connecting them.
This characterizes all vertices ofCi with one exception: if one could form a length three
cycle replacing two consecutive length two cyclesCi andCi+1, then there arec/2 edges
between the pairski−1, ki andki , ki+1 as well. We may easily distinguish this case.
Hence we may form all cycles ofKv1,v2.

9.5. Transforming the Karger–Stein output to a cactus

We transform all min-cuts in the output of the Karger–Stein algorithm to a cactus
representation by using the inductive cactus algorithm of Section 9. Recall that the
cactus representation can be built from anotherK′ arising by contracting a pair of
verticesv1 andv2 and the so-called residual cactusKv1,v2 (Definition 6).

In our algorithm, we fix a permutationw1, w2, . . . , wn of the vertex set. Given the
permutation{wi }, we proceed as follows: we build the cactus representationK′ of the
graph arising by contracting all vertices{w1, . . . , wi }; from this cactus, we build that
of the graph with{w1, . . . , wi−1} contracted. In other words, we equate

v1 = {w1, . . . , wi−1} and v2 = wi

and use the procedure of Section 9. In order to make the simplifying assumption of the
Karzanov–Timofeev cactus algorithm as in Lemma 15, we choose the permutation such
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that there is always an edge connectingwi to {wi+1, wi+2, . . . , wn}. Such a permutation
can be selected by traversing a search tree of the graph.

In summary, we have to buildK fromK′ for i = n−1,n−2, . . . ,2, in an (amortized)
Õ(n) time, given the output of the Karger–Stein algorithm. The algorithm requires the
knowledge of the residual cactusKv1,v2; the main difficulty is that we do not have this
cactus at hand. In our algorithm (Algorithm 4) we find the residual cactus and buildK
fromK′ as in Algorithm 3 at the same time.

The high-level structure of the algorithm is to select cuts(A|A) with v1 ∈ A and
v2 ∈ A and incorporate them one-by-one into the representation. Each such cut(A|A)
is represented by a unique cycle ofK. This cycle must be one of the cyclesC1, . . . , Ct

of the residual cactusKv1,v2 (see Lemma 13) whereCi andCi+1 share a vertexki . By
Lemma 15ki andki+1 are adjacent in the cactus and thus they form the vertices of
a pathP of the residual cactus. We also know thatK′ arises by contracting all edges
of P , or, in other words, all verticeski are contracted to a vertexu ∈ K′. Also recall
that if an edge of a length four cycle is contracted, the resulting length three cycle is
replaced by three new length two cycles sharing a common vertexk ∈ K′.

Now whenever(A|A) is selected, we unfold the cycleCi representing(A|A) by
subdividing a vertex to two new verticeski andki+1. ProvidedCi has length four, this
also means replacing the three length two cycles ofK′ by a new length four one. Hence
in our algorithm we will maintain a cactus representationK′′ withK′′ = K′ as input and
K′′ = K as output and with the property thatK′′ arises by contracting some consecutive
segments of the verticesk0, . . . , k` ∈ K and by replacing length three cycles by three
length two ones sharing a common vertex.

Given A and A, we give a key notion to identify cycleCi . First of all, we modify
the cactus representationK′′ by deleting all verticesW mapped to a vertexk whenever
bothW∩ A andW∩ A are non-empty. Then we say that a cycleC of the cactusbelongs
to A (or, symmetrically, toA) if all graph-vertices mapped to its vertices belong to
A. Since there may be cycles whose vertices have no graph-vertex mapped to them at
all, we extend this notion to such cycles as follows. If all cycles that share vertexk
belong toA with one exceptional cycleC with no vertices mapped to it, we declarek to
belong toA and if all vertices of a cycle belong toA with at most one exception that
is undetermined, then the entire cycle belongs toA. Now the notion can be recursively
extended: by removing exactly one edge from each cycle with no vertex mapped to it,
the edges of these cycles form disjoint subtrees of the cactus. Hence if we start from the
leaf level, we may inO(n) time either decide for a cycle whether it belongs toA or A
or declare it unknown.

Theorem 13. Consider a cut(A|A) with v1 ∈ A andv2 ∈ A represented by a cycleCi

of K. LetK′′ be an intermediate cactus representation arising in our algorithm. Then
either

1. all cycles belong to eitherA or A; there is a single cactus-vertexu that belongs to
cycles of both types; andCi is a length two cycle that can be added by subdividingu;

2. there is exactly one cycleC ′i of length at least four that belongs to neitherA nor A
andCi arises by increasing this cycle by a new edge;

3. or there is exactly one cycle of length two with verticesu andk such thatk has no
graph-vertex mapped to it and two further cyclesCA andCA sharingk whereCA
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belongs toA and CA to A. ThenCi has length four and arises by the subdivision
of u into two new vertices and the deletion ofk.

Proof. It is immediate by the definition ofK′′ that all of its cycles except for those
created by the contraction of an edge ofCi (recall there may be three such cycles)
belong to eitherA or A. Now the three cases as in the theorem arise by distinguishing
the cases of a cycleCi with length two, length more than four and finally of length
exactly four.

ut

Algorithm 4: buildingK fromK′.
1. queue←all min-cuts separatingv1 andv2;
2. truncate the queue to less thann elements

until the queue is empty
3. pop a cut(A|A) from queue;

decide for all cycles whether they belong toA or A;
if all cycles belong to eitherA or A

then select the unique common vertexu
of cycles that belong toA and of those that belong toA
subdivide u by a new length two cycle for(A|A)

if a length two cycleC belongs to neitherA nor A
then select the vertexk ∈ C that has

no graph-vertex mapped to it and
is adjacent to two length two cyclesCA andCA
belonging toA andA, respectively.
replace C, CA andCA by a length four cycle

if a cycleC′i of at least four belongs to neitherA nor A
then insert a new edge intoC′i for (A|A)

to form the new cycleCi
4. remove from queue all cuts represented by

the augmented cycleCi
repeat

Algorithm 4 performs the above procedure. In the analysis, we have to be careful
since we are not allowed to explicitly read all vertices in all min-cut sides. We have
to read all vertices of cuts(A|A) arising in Step 3 of Algorithm 4; we have to make
sure that there are at mostO(n) such cuts in the entire run of the algorithm then. This
is the reason why we inserted Step 4: each cut(A|A) forces a new cactus-edge to be
added, while the number of cactus-edges isO(n) altogether. However we also have
to make sure step 4 is not called too often, which could be caused by a high number
(possibly even�(n2)) repetitions of the exact same cut in the output of the Karger–Stein
algorithm. The truncation in step 2 will make sure that no more thann cuts reach the
main loop. We analyze the four main Steps 1, 2, 3 and 4 of Algorithm 4 separately.
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9.5.1. Step 1.First we consider the implementation of the queues in Step 1. Recall
that all min-cuts are contained in the leaves of the trees generated by the Karger–Stein
algorithm. We show how to label all these cuts by the value ofi such thatwi is separated
from {w1, . . . , wi−1}. We use the following simple fact:

Lemma 16. For a graph withn0 vertices arising by contracting some vertices ofG,
there are at mostn0− 1 values ofi such thatwi is in a different contracted vertex than
all of w1, . . . ,wi−1.

ut
We maintain the following data structure for all intermediate contracted graphsG0

produced by the Karger–Stein algorithm. For all valuesi wherewi can be separated
from {w1, . . . , wi−1} in G0, we record the vertexui of G0 that containwi and the subset
Ui that contain{w1, . . . , wi−1}. Let G0 haven0 vertices; then the size of the data is
O(n2

0). Notice that each leaf of the computation tree of the Karger–Stein algorithm (and
thus each min-cut) has a unique valuei ; this value is what we require.

Now assumeG0 gets contracted. Then we update the data structure as follows. For
all values ofi , we find the new contracted vertices that containui andUi . We check if
these sets are disjoint; if not, we removei from the data. The procedure takesO(n2

0)

time.

9.5.2. Step 2.We give a very simple rule to decide whether one cut is a repeated copy
of another one in the queue. Since all theses cuts form a chain by Lemma 15, the number
of vertices on the same side asv1 give unique names of the cuts in the queue. Given the
size as a label, we may immediately remove repeated cuts in timeO(n) plus the queue
size.

We are hence done if we implement the size count in the Karger–Stein algorithm.
However this is easy: we maintain the number of vertices contracted to each intermediate
vertex; whenever two new vertices are contracted, we may hence inO(1) time follow
up the vertex count.

9.5.3. Step 3.For a cut(A|A) that arises in Step 1, we have to know all vertices ofA
in order to perform the consequent steps of the algorithm. For each such cut, we saw
that we need to spend2(n) time. Step 3 does not form a computational bottleneck by
the following lemma:

Lemma 17. A cactus representation hasO(n) edges. Hence Step 3 is performed for
O(n) min-cuts only.

Proof. The first part is due to Karzanov and Timofeev [28] (see also [4]). As for the
second part, notice that each cut(A|A) in Step 3 generates a new edge of the cactus
representation.

ut

9.5.4. Step 4.Finally, we analyze the number of cut–cycle pairs that may reach Step 4.
By this analysis, we will complete the description of our cactus algorithm. We give an
amortized analysis for all calls to Step 4 for all then− 1 choices of the pairv1 andv2.



638 András A. Benczúr

Theorem 14. Step 4 of Algorithm 4 is performed onO(n) cuts for each newly cre-
ated cactus-edge. The time spent on one removal step isO(logn). Hence the cactus
representation can be built in randomizedO(n2 log3 n) time.

Proof. The first part follows by Step 2. If we show the second part, theO(n2 log3 n)
total running time will arise as follows. Within this time bound, we run the Karger–Stein
algorithm and also build the auxiliary information needed in Steps 1 and 2. Steps 1–3
also fit within the time bounds. Finally in Step 4 we takeO(logn) steps forO(n) cuts
each for each single cactus-edge. We are done since the number of cactus-edges isO(n)
by Lemma 17.

Now we give a procedure to efficiently decide that a given cut(B|B) is already
represented by an intermediate cactusK′′. Let (A|A) be a cut separating cycleC ′i as in
Step 3 of Algorithm 4; let a new edge be added toC ′i by subdividing a vertex to two
new onesk andk′. Consider an arbitrary pair of graph-verticesx andx′ mapped to the
subgraphs ofK′′ containingk andk′, respectively, that arise by the deletion of the edges
of Ci . Then by Lemma 15 another cut(B|B) of the queue hasx andx′ on different sides
if and only if (B|B) is represented by the augmented cycleCi .

To complete the proof, we show that it can be decided inO(logn) time whether
(B|B) hasx andx′ on different sides. Notice that the vertex pairx andx′ can be found in
anO(n) time pre-processing step when the new cactus-edge betweenk andk′ is formed.

We are done if we may decide for a given min-cut sideA and a vertexv in O(logn)
time whetherv ∈ A. In order to do this, while we are performing recursive contractions,
we have to add additional pointers to access the data produced, as follows. In the Karger–
Stein algorithm, a single contraction can spendO(n0) time onG0 by using adjacency
matrices as data structure. Within this time, we can build pointers from the vertices of
G0 to the contracted vertices. Thus to decide whetherv ∈ A for a vertexv and cut(A|A)
found by the algorithm, we have to scan the path of lengthO(logn) from the root to the
leaf containing the cut. This takesO(logn) time, as required.

ut

10. Conclusion

We presented various edge connectivity augmentation algorithms for undirected graphs
with integer edge capacities. Our successive algorithm (producing an increasing se-
quence of augmented graphs for increasing target connectivity values) requires the
computation ofO(n) cactus representations, the initial extreme system, and usesO(n3)

extra work. This algorithm is inherently sequential; the best running times by the re-
sults of Part II areÕ(n2m) deterministically and̃O(n3) if Monte Carlo algorithms are
allowed.

Our unrestricted (non-successive) augmentation algorithm computes a single cactus
representation and the initial extreme system; it usesO(n2) extra work. An implementa-
tion of this algorithm is the first RNC algorithm to solve the augmentation problem. The
randomized sequential running time is improved compared to our successive algorithm
to

Õ(n2 min{n, logτ/c, lognU/c}) ,
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whereU is the highest capacity of an edge in the input graph andτ is the connectivity
increment.

In our paper, several questions remain open. The bottleneck of our augmentation
algorithm is to find the initial extreme system. An improvement for this task would
immediately improve our non-successive augmentation algorithm. Very recently it was
shown in [6] that extreme sets can be found in (randomized)Õ(n2) time, yielding
a matching runtime for edge augmentation. For the hypergraph augmentation problem,
it remains open whether an extreme sets based algorithm may find the optimum solu-
tion. The efficiency of neither the hypergraph augmentation nor the (ordinary) parallel
augmentation problems is attacked in this paper.
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