„current issues in data management, database and information systems research”
Workshop: QDB '11, Quality in Databases

- Ahmed K. Elmagarmid (Qatar Computing Research Institute): *Insight into Data Cleaning and Linkage*

- Anastasios Karagiannis, Panos Vassiliadis (University of Ioannina), Alkis Simitsis (HP Labs): *Macro-level Scheduling of ETL Workflows*

- Wenfei Fan (University of Edinburgh): *Data Quality: Theory and Practice*

- Melanie Herschel, Torsten Grust (Universitaet Tubingen): *Transformation Lifecycle Management with Nautilus*
Distributed Entity Resolution (ER): Paradigms and Tools

distributed Key-Value Stores:
- distributed B-tree index for all attributes
- Project Voldemort

MapReduce:
- map → reduce operations
- Apache Hadoop

Bulk Synchronous Parallel:
- supersteps: computation → communication → barrier synchronization
- Apache Hama

Csaba István Sidló, András Garzó, András Molnár, and András A. Benczúr. Infrastructures and bounds for distributed entity resolution
Distributed ER Experiments

- 15 older blade servers, 4GB memory, 3GHz CPU each
- insurance client dataset (20 million records, ~2 records per entity)
- match logic: multiple attributes, combined in 5 features

Csaba István Sidló, András Garzó, András Molnár, and András A. Benczúr.
Infrastructures and bounds for distributed entity resolution
A Large-scale ER Application

- Intelius: “intelligently integrating information online for personal security and to inform the decision-making process”
- ehhez: publikus adatbázisok integrálása → large-scale ER
 - saját pipeline-szerű keretrendszerük:
 - attribútumok gazdagítása (külső tudás: pl. nevek gyakorisága), rekord-rekord párokra:
 - birthday_difference, regional population, street_address_match etc.
 - blocking
 - klasszifikátorok
 - előadásban: cost-sensitive Alternating Decision Tree
 - a tévedések irányának különbözőségére
 - érthető kimenet
 - bemenet: „several billion personal records”

Sheng Chen (Stevens Institute of Technology), Andrew Borthwick, and Vitor R. Carvalho(Intelius Data Research): The Case for CostSensitive and Easy-To-Interpret Models in Industrial Record Linkage
VLDB 2011: Research Sessions

- Database Design
- Query Processing
- Distributed Systems x 2
- Transaction Processing
- Integrity Maintenance
- Uncertain Data
- Causality, Quality, and Dependencies
- Privacy and Protection
- Statistical Methods x 2
- Data Integration
- Streams and Events
- Skyline and String Matching
- Entity Matching
- Web + Web Data
- Ranking + Searching and Ranking
- Graph Data x 3
- GeoSpatial
- Causality, Quality, and Dependencies
- New Hardware Architecture
- Cloud Computing and High-Availability
- MapReduce and Hadoop
- GPU-based Architectures and Column-store Indexing
- Human-Computer Interaction
- Social Networks
- Recommender Systems
VLDB 2011: Research Sessions

- Database Design
- Query Processing
- Distributed Systems x 2
- Transaction Processing
- Integrity Maintenance
- Uncertain Data
- Causality, Quality, and Dependencies
- Privacy and Protection
- Statistical Methods x 2
- **Data Integration**
- Streams and Events
- Skyline and String Matching
- Entity Matching
- Web + Web Data
- Ranking + Searching and Ranking
- Graph Data x 3
- GeoSpatial
- Causality, Quality, and Dependencies
- New Hardware Architecture
- **Cloud Computing and High-Availability**
- MapReduce and Hadoop
- GPU-based Architectures and Column-store Indexing
- Human-Computer Interaction
- Social Networks
- **Recommender Systems**
Comparison: ADBIS 2011 Research Sessions

Advances in Databases and Information Systems

- Central and East European countries
- theory and/or applications of database technology and information systems

- Query Processing x 2
- Business Process Management
- Data Warehousing x 2
- DB Systems
- Spatial Data

- Information Systems x 2
- Physical DB Design
- Evolution, Integrity, Security
- Data Semantics
- System Issues
“Global Brain”

- "worldwide intelligent network formed by people together with the information and communication technologies that connect them into an "organic" whole" (Wikipedia)
 - computers + human problem solving
- Danny Hillis: “Global consciousness is that thing responsible for deciding that pots containing decaffeinated coffee should be orange.”
- speed of knowledge propagation increases
- now developing with web applications: AI + collective intelligence of users → massive, interlinked cloud databases
 „we are the ants leaving feromone trails, that google is following” (forrás: google keresés)
 - eg.: human memory + google (megj., Benczúr A.: kérdések hossza, prefixek, emberi korlátok); sensing with mobile sensors (photo upload); ...
 - new kind of global brain, global consciousness
 - morality?, repsonsibility?, … (eg.: financial market automatization)

Keynote Talk: Tim O'Reilly (O'Reilly Media). Towards a Global Brain.
„Big Data”

• what „Big Data” means? are existing tools relevant?
 • modeling: bottleneck (vs. size) (more data we can model)
 • instead: automatic model generation („data frame theory”),
• big data patterns (example: personal GPS tracker):
 • digital shoebox: raw data + sourceID + instanceID
 • information production
 • model development
 • monitor, mine, manage (fraud detection, ...)

Keynote Talk: David Campbell (Microsoft). Is it still „Big Data” if it fits in my pocket?
Entity Matching: collective EM

- framework to scale any generic EM algorithm
 - collective EM: based on relations (e.g. cites)
 - poor scalability
- running multiple instances of the EM algorithm on small neighborhoods of the data and passing messages across neighborhoods to construct a global solution
 - multiple instances + message passing
- EM algorithms: black-boxes + properties (monotonicity)
 - accurate & sound algorithm
- experiments:
 - 2003 KDD Cup, HEPHTH: papers, 58,515 author references, 13,092 authors, 29,555 papers
 - Hadoop impl.

Vibhor Rastogi (Yahoo! Research), Nilesh Dalvi (Yahoo! Research), Minos Garofalakis (Technical University of Crete): Large-Scale Collective Entity Matching
Main Memory Hybrid Storage: HYRISE

- predict the performance of different partitionings → select the best
- workload: OLTP vs. OLAP
- goal: real-time analytics → no separate OLAP system
- in memory: "we believe that many future databases … will fit into the memory of a small number of machines"
- similar: Data Morphing
- other vendors, hybrid storage layouts: Vertica FlexStore, VectorWise, Oracle, GreenPlum

\[r = (a_1 \ldots a_8) \]

\[
\begin{array}{ccc}
C_1 \ (a_1) & C_2 \ (a_2 \ldots a_6) & C_2 \ (a_7 \ldots a_8) \\
\end{array}
\]

Martin Grund (Hasso-Plattner-Institute), Jens Krüger (Hasso-Plattner-Institute), Hasso Plattner (Hasso-Plattner Institute), Alexander Zeier (Hasso-Plattner Institute), Philippe Cudre-Mauroux (MIT), Samuel Madden (MIT). HYRISE - A Main Memory Hybrid Storage Engine
Column-Oriented MapReduce Storage

- parallel DBMS vs. MapReduce
- problems:
 - complex data types
 - writing map and reduce functions, no declarative query language
 - default Java
- solution:
 - lazy record construction
 - compression (LZO, simple dictionaries)
 - Pig, Hive, Jaql: declarative → further optimization
 - Column-oriented storage formats for HDFS blocks
- experiments, HDFS replication:
 - file → binary format: 3x speedup
 - file → column-based containers: 1-2 magnitudes of speedup
High-Availability RemusDB (best paper)

- HA: implemented in DB ↔ service below DB?
- traditional HA: high performance overhead
- active-standby HA with DBs in virtual machines
 - failover with virtualization layer → transparent to DB
 - Remus: VM replication + PostgreSQL, MySQL
- DBMS-aware VM checkpointing system: RemusDB
 - reduce states transferred during checkpoints
 - reduce latency: minor DB code modifications
- experiments: TCP benchmarks
 - low overhead, fast failover

Data Placement in Hadoop

- relocate related data on the same set of nodes
- CoHadoop: lightweight extension (to HDFS)
 - no data format requirement
 - application hints: related data
- HDFS: random block placement
- motivation: event log processing (sessionization)

Mohamed Eltabakh, Yuanyuan Tian, Fatma Ozcan, Rainer Gemulla, Aljoscha Krettek, John McPherson. **CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop** (IBM, Max-Planck)
Main Memory Column-stores: Indexing

- preliminary index structures: low cost, specific key ranges
- adaptive indexing: based on usage of key ranges
 - database cracking: costly init, fast convergence,
 - adaptive AVL tree - „incremental quicksort”
 - adaptive merging: low init cost, slow conv.,
 - „incremental mergesort”
- hybrid method: low initialization cost, rapid convergence

Stratos Idreos, Stefan Manegold, Harumi Kuno, Goetz Graefe. Merging What's Cracked, Cracking What's Merged: Adaptive Indexing in Main-Memory Column-Stores (HP Labs, CWI)
- ACID NoSQL (industrial)

- application: real-time bidding for advertising, campaign management, social networking (gaming)
- goal: linear scalability + ACID, consistency, backup/restore, high availability, …
- key-value store, no SQL support
- állítás: jobb, mint VoltDB, Clustrix, Cassandra, MongoDB, Redis, …
Tenzig: SQL on MapReduce (industrial)

- mostly complete SQL, high performance, scalability, reliability, low latency, columnar data support, ...
- 1,000+ users, 10,000+ queries / day, 1.5 PB data
- SQL → MapReduce (Sawzall, Flume-Java, PIG, HIVE, HadoopDB); MapReduce → DBs (AsterData, GreenPlum, Paraccel, Vertica)
- motivation: Google Ads data warehouse
 - costly scalability, rapidly increasing loading times, limited analyst creativity
- implement DB optimizations with slight MapReduce modifications
- impl.: distributed worker pool (→ low latency), query server, metadata server
- optimization:
 - for projection, filtering, joins (broadcast, sort-merge, hash)
 - be aware of the heterogeneous sources (BigTable)

Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha Aragonda, Vera Lychagina, Younghee Kwon, Michael Wong. Tenzing - A SQL Implementation on the MapReduce Framework (Google)
Distributed Systems: Paxos

- Paxos: „family of protocols for solving consensus in a network of unreliable processors”

- „Spinnaker” experimental datastore
 - Paxos: replication protocol (vs. two-phase commit)
 - fast (-er!) for reads, 5-10% slower for writes as alternatives
 - works if majority of nodes are alive

- may be used for (?): Amazon Dynamo, Google Bigtable, Yahoo PNUTS, MS SQL Azure, FAWN

Figure 2: Example of a Spinnaker cluster.

Jun Rao, Eugene Shekita, Sandeep Tata. Using Paxos to Build a Scalable, Consistent, and Highly Available Datastore (LinkedIn, IBM)
Human-Assisted Graph Search

- DAG + “Is there a target node that is reachable from the current node?”

- applications: interactive search, image segmentation, debugging workflows + other “crowd sourcing”: text summarization, labeling, ranking … (CrowDB!)
 - human computation optimizer!
 - single / multi, bounded / unlimited, DAG / downward-forest / upward forest

- experiments: DMOZ concept hierarchy + internet director

Aditya Parameswaran, Anish Das Sarma, Hector Garcia-Molina, Neoklis Polyzotis, Jennifer Widom. *Human-Assisted Graph Search: It's Okay to Ask Questions*
Social Networks

- Structural Trend Analysis For Online Social Networks (UCSB)
 - use of friend information (relations)
 - detection methods for coordinated and uncoordinated (viral) topics
- On Social-Temporal Group Query with Acquaintance Constraint
 - find activity time and attendees with minimum total social distance
 - NP-hard problem → efficient pruning
- Social Content Matching in MapReduce (Yahoo, Max-Planck)
 - match content of suppliers and consumers (Flickr, Yahoo! Answers, …) ; bipartite graph (user - content)
 - maximize overall relevance
Cloud and Indexing

- “database as a service”
 - requires: distributed indexes for clouds
- framework for users: define their own indexes; P2P model + Cayley graph
- implementations: distr. B+, multi-dim., distr. hash
- experiments: Amazon EC2

BIRTE '11: Real Time Business Intelligence

- Guy Lohman (IBM Almaden Research Center, USA): **Blink: Not Your Father’s Database**

- Qiming Chen, Meichun Hsu, Ren Wu (HP Labs, USA): **A cost-aware strategy for merging differential stores in column-oriented in-memory DBMS**

- José Blakeley (Microsoft Corporation): **Microsoft SQL Server Parallel Data Warehouse – Architecture Overview**

- Sang Kyun Cha (Seoul National University & SAP, Korea): **SAP HANA: Breaking Vertical and Horizontal Tiers in Enterprise with High-Performance Distributed In-Memory Database**

- Shilpa Lawande, Andrew Lamb, Lakshmikant Shrinivas (Vertica/Hewlett Packard): **Scalable Social-Graphing Analytics with the Vertica Analytic Platform**
Challenges and Vision

- Data Markets in the Cloud: An Opportunity for the Database Community
- Data is Dead... Without What-if Models (IBM)
- Antropocentric Data Systems
- ...

...
További érdekes cikkek

- Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining
- Graph Indexing of Road Networks for Shortest Path Queries with Label Restrictions (UCR)
- Entity Matching: How Similar is Similar
- Compression Aware Physical Database Design (Microsoft)
- Jaql: A Scripting Language for Large Scale Semistructured Data Analysis (IBM)
- Serializable Snapshot Isolation for Replicated Databases in High-Update Scenarios
- Automatic Optimization for MapReduce Programs
- Generating Efficient Execution Plans for Vertically Partitioned XML Databases