Temporal influence over the Last.fm social network

    In a previous result, we showed that the influence of social contacts spreads information about new artists through the Last.fm social network. We successfully decomposed influence from effects of trends, global popularity, and homophily or shared environment of friends. In this paper, we present our new experiments that use a mathematically sound formula for defining and measuring the influence in the network. We provide new baseline and influence models and evaluation measures, both batch and online, for real-time recommendations with very strong temporal aspects. Our experiments are carried over the 2-year “scrobble” history of 70,000 Last.fm users. In our results, we formally define and distil the effect of social influence. In addition, we provide new models and evaluation measures for real-time recommendations with very strong temporal aspects.

    Év: 
    2015
    Szerzők: 
    Róbert Pálovics, András A. Benczúr
    Kiadvány: 
    Social Network Analysis and Mining (Springer)